FRIDAY, JUNE 21, 1895.

CONTENTS:

On the Distribution and the Secular Variation of Terrestrial Magnetism: L. A. BAUER.........673

On a Devonian Limestone-Breccia in Southwestern Missouri: OSCAR HERSHEY676

Current Notes on Physiography (X.): W. M. DAVIS.................................678

Notes on Agriculture (III.): BYRON D. HALSTED..680

Correspondence: ——..........................682

The Illustrations in the Standard Natural History: ELLIOTT COUES; C. HART MERRIAM.

Scientific Literature: ——..........................684

Roscoe's John Dalton and the Rise of Modern Chemistry; EDWARD H. KEISER. Bach's Elasticität und Festigkeit: MANSFIELD MERRIMAN.

The Pocket Gophers of the United States: J. A. ALLEN. Coltett's Norway Lemming: C. H. M.

Notes and News: ——..........................692

Astronomy; General.

Societies and Academies: ——..........................696

Biological Society of Washington; The New Jersey State Microscopical Society.

Scientific Journals: ——..........................700

The American Journal of Science.

MSS. Intended for publication and books, etc., intended for review should be sent to the responsible editor, Prof. J. McKeen Cattell, Garrison on Hudson, N. Y.

Subscriptions and advertisements should be sent to SCIENCE, 41 N. Queen St., Lancaster, Pa., or 41 East 49th St., New York.

ON THE DISTRIBUTION AND THE SECULAR VARIATION OF TERRESTRIAL MAGNETISM.

In two papers* read before the Philosophical Society of Washington, May 25th, the following main results were obtained:

* 'On the Secular Variation of Terrestrial Magnetism' and 'A Preliminary Analysis of the Problem of Terrestrial Magnetism and its Variations.'

The minimum change in declination along a parallel of latitude at any particular time, and the minimum average secular change along a parallel of latitude during a given interval of time occur near the equator; both quantities generally increase on leaving the equator.

Exactly the reverse is the case with regard to the inclination, viz.:

The maximum change in inclination along a parallel of latitude at any particular time, and the maximum average secular change along a parallel of latitude during a given interval of time occur near the equator; both quantities generally diminish on leaving the equator.

These laws were established with the aid of data scaled from magnetic charts from 1750 to 1885 at points 20° distant in longitude and in latitudes 60°N, 40°N, 20°N, equator, 20°S, 40°S and 60°S. They again point to the same conclusion reached previously by the writer in a somewhat different way, namely, that the distribution and the secular variation of terrestrial magnetism appear to be closely related; they are subject to similar laws. It is hence probable that they are both to be referred primarily to the same cause. This common cause seems to be connected in some way with the earth's rotation.

If we regard the earth as uniformly magnetized, having its magnetic poles coincident with the geographical poles, and take the X axis of a system of coordinates whose origin is in the center of the earth, parallel to the magnetic axis, we shall get the fol-