GAERTNER
RESEARCH SPECTROMETER

with precision tangent screw permitting direct reading to six seconds

As we observe our own 50th anniversary we extend sincere congratulations to the

Smithsonian Institution

on the occasion of its 100th anniversary and its great contribution toward the diffusion of knowledge.

THE GAERTNER SCIENTIFIC CORPORATION
1204 Wrightwood Avenue
Chicago 14, U. S. A.

Humphry Davy was born in Penzance, Cornwall, 1778.

At 22 he published "Researches Chemical and Philosophical, chiefly concerning Nitrous Oxide or Dephlogisticated Nitrous Air and its Respiration." This book made his reputation.

He isolated the metals of the alkalies and alkaline earths and boron, demonstrated the elementary nature of chlorine and worked on the oxides of chlorine and on iodine; he also investigated the nature of flame and, as a result, invented a safety lamp for miners. His views on the intimate connection between electrical and chemical forces foreshadowed the modern atomic theory.

Davy was also a poet of ability; the poet Coleridge declared that if he "had not been the first chemist, he would have been the first poet of his age."

Davy died at Geneva in 1829.

This is the ninth of a series of brief biographies of eminent chemists sponsored by The Coleman & Bell Co., Manufacturing Chemists, Norwood, Ohio, U. S. A.

Men of Achievement
in the World of Chemistry

HUMPHRY DAVY
1778-1829
Teaching Aids of Distinction for Courses in Elementary Bacteriology

FROBISHER'S BACTERIOLOGY

By Martin Frobisher, Jr., S.B., Sc.D., F.A.A.A.S., F.A.P.H.A., Associate Professor of Bacteriology, The Johns Hopkins University. 324 pages, 5 1/4" x 7 1/4", with 398 illustrations. $4.00 Third Edition

Throughout this Third Edition, Dr. Frobisher has maintained all of the sound, broad and unspecialized teaching fundamentals that have earned for it an outstanding position as a bacteriology text. The material furnishes a firm foundation upon which the student may build for specialization in any field—medicine, home economics, botany, chemistry, physiology, industrial processes, engineering, agriculture, etc. General applications of facts to problems of everyday human affairs are pointed out. The relationships of bacteria to other forms of life and problems inviting research are also indicated. Finely illustrated throughout.

GREAVES' BACTERIOLOGY

By Joseph E. Greaves, M.S., Ph.D., Professor of Bacteriology, and Ethelyn O. Greaves, M.S., Ph.D., Dean, School of Home Economics, Utah Agricultural College. 613 pages, 5 1/4" x 7 1/4", with 169 illustrations. $4.00 New (5th) Edition

Students will find this presentation of elementary bacteriology both absorbing and interesting—qualities accomplished through the use of simplified language that is easily understood. The authors first devote considerable space to picturing the background of the study. The student learns of the development of bacteriology as a science, and of the underlying theories and facts upon which the study is built. The forms, functions and characteristics of both beneficial and injurious microbes are explained and illustrated.

From this general discussion of the fundamentals, the subject is developed in detail in its application to the life of man—in the arts and industries—to specific diseases and to immunization.

Congratulations

TO THE SMITHSONIAN INSTITUTION on Its 100th Anniversary

W. B. SAUNDERS COMPANY

West Washington Square Philadelphia 5
Texts that teach physics

BLAKISTON BOOKS

FOLEY
College Physics, 3rd Ed.
Widely used for the beginning course in colleges of liberal arts and science. Abundance of original illustrations with real teaching value. Use it for a quicker, clearer understanding of beginning college physics. 470 Illus. 737 Pages. $3.75.

DUFF (and Contributors)
Physics, 8th Ed.
Prepared by collaboration of eminent teaching physicists, this text is suitable to the requirements of science and engineering students. Clearness and scientific accuracy characterize the text. Edited by A. Wilmer Duff, Worcester Polytechnic Institute. 630 Illus. 715 Pages. $4.00.

STRANATHAN
The “Particles” of Modern Physics
A refreshing presentation of modern concepts of atomic structure. Experimental evidence is stressed throughout and well selected problems are included. 218 Illus. 571 Pages. $4.00.

HECTOR, LEIN & SCOUTEN
Electronic Physics
A study of the fundamentals of electricity and light by means of modern electronic concepts. A feature of great pedagogical value is the use of color in the illustrations. 289 Illus. 355 Pages. $3.75

THE BLAKISTON COMPANY, Philadelphia 5, Pa.
Please send the following books:

Books Wanted:

Name

School

Address

Set 8-9-46
Whitefish Mitosis

Turtox offers the following slides of the early embryology of the whitefish:

E13.65 Whitefish, 1st cleavage spindle (discoidal-meroblastic). Unusually large and clear achromatic and chromatic figure. Serial .. 1.50

E13.66 Whitefish, 2nd cleavage spindle. Serial .. 1.50

E13.67 Whitefish, early cleavage. Until the blastodisc has reached the late cleavage stage, the blastomeres divide in unison. As a consequence only one phase of mitosis will be found on this slide. The figures however are extremely clear and easily interpreted. When ordering designate stage of mitosis desired. Serial .. 1.50

E13.75 Whitefish. Cleavage stages, fixed and stained to illustrate the fibrillar structure of cytoplasm. Ser. sec. of blastodisc 1.50

E13.77 Whitefish, blastula (discoblastula). The large clear achromatic and chromatic figures make this slide invaluable for the teaching of mitosis in elementary courses. *Numerous figures including all stages of mitosis.* Serial .. 1.50

E13.78 Whitefish, blastula. Typical sections of the above stage. *All phases of mitosis are represented* .. 1.00

E13.79 Whitefish, gastrula (discogastrula). Serial .. 1.50

E13.81 Whitefish, primitive streak w.m. .. 7.50

E13.82 Whitefish, w.m. of embryo in somite stage .. 0.75

E13.83 Whitefish, ser. x.s. of embryo in somite stage .. 2.00

Turtox Biology Catalog No. 14

This completely revised, 500-page handbook of biological teaching materials will be ready for mailing on September 1, 1946. When writing for your free copy, please *be sure to mention your school address.*

General Biological Supply House

761-763 East Sixty-ninth Place
Chicago 37, Illinois

The sign of the Turtox pledges absolute satisfaction
Congratulations are extended to the Smithsonian Institution on its One Hundredth Anniversary, August 10, 1946.

The Central Scientific Company, established in 1889, is known internationally for the manufacturing and merchandising of scientific instruments and apparatus for educational, industrial and clinical laboratories. Cenco's complete stocks facilitate testing of all types:

Coal and Coke
Dairy Products
Fermentation Industries
Food and Drugs
Highway Testing
Leather and Glue
Metallurgy
Milling, Baking, Grains

Paints, Varnishes, etc.
Paper
Petroleum Products
Rubber
Soils and Fertilizers
Textiles
Vegetable Oils, Soap
Water and Sewage

Apparatus manufactured by and bearing the famous Cenco trade mark include: DeKhotinsky drying ovens, incubators, thermoregulators, "Photometers" and "Spectrophotometers," Hyvac, Pressovac, Megavac, Hypervac and Supervac pumps, Tensiometers, Hydrophil balances, etc. Cenco also distributes international brands:

Baker's Analyzed Chemicals • Coors Porcelainware
"Pyrex" and "Vycor" Brand Glassware • Normax,
Exax and Resistance Glassware • Leco Carbon and
Sulphur Determinators • Waring Blenders

For assurance of product, price and service—specify Cenco.
a steel microslide filing cabinet offering 45% greater capacity at amazingly low cost!

This new "LAB-AID" cabinet is the ultimate solution to the filing problems encountered in the laboratory. It is of welded-steel, fire-resistant construction throughout. Files 3"x1" or 3"x2" microslides, 2"x2" transparencies, large lantern slides, index cards, even paraffin blocks... in single-row drawers, all fitting interchangeably into a smooth-tracking master drawer-rail system. Unit-sections, assembled in any combination, can be used singly, or stacked to any convenient height. With all these advantages, the cost-per-slide capacity in the "LAB-AID" cabinet is the lowest ever. Investigate this remarkable equipment... the coupon will bring details.

The "LAB-AID" microslide filing cabinet

By merely dropping in a patented "LAB-AID" slotted liner, any drawer is converted from storage filing to individual-slide filing, or vice-versa.

The Technicon Company
215 East 149 Street
New York 51, N. Y.

Please send me details concerning your "LAB-AID" microslide filing cabinet.

Name __________________________

Street __________________________

City __________________________
AMINO ACIDS
for Research

Amino acids, the nitrogenous components of proteins, are of vital importance to adequate growth, maintenance and repair of tissue. As a service to nutritional research, GBI offers the following products in convenient-sized packages at an economical price:

<table>
<thead>
<tr>
<th>dl-Alpha Alanine</th>
<th>L(-) Leucine (Methionine-free)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta Alanine</td>
<td>L(+) Lysine Monohydrochloride</td>
</tr>
<tr>
<td>L(+) Arginine Monohydrochloride</td>
<td>dl-Methionine</td>
</tr>
<tr>
<td>L(-) Cysteine</td>
<td>dl-Phenylalanine</td>
</tr>
<tr>
<td>L(+) Cysteine Hydrochloride</td>
<td>dl-Threonine</td>
</tr>
<tr>
<td>L(+) Glutamic Acid</td>
<td>L(-) Tryptophane</td>
</tr>
<tr>
<td>Glycine (Ammonia-free)</td>
<td>dl-Tryptophane</td>
</tr>
<tr>
<td>L(+) Histidine Monohydrochloride</td>
<td>L(-) Tyrosine</td>
</tr>
<tr>
<td>dl-Isoleucine</td>
<td>dl-Valine</td>
</tr>
</tbody>
</table>

Write for our Descriptive Price List for complete information on diet materials, crystalline vitamins, microbiological media and miscellaneous biochemicals for research.

GENERAL BIOCHEMICALS, INC.
LABORATORY PARK
CHAGRIN FALLS, OHIO
THEY'VE GROWN UP TOGETHER...

Sir Charles’ “Differential Measurer”
and
Mr. Smithson’s Brain Child

The founding of the Smithsonian Institution was three years in the future when Sir Charles Wheatstone, in his 1843 Bakerian Lecture before the Royal Society, announced his new “differential resistance measurer”—an instrument based on a circuit devised by English scientist S. Hunter Christie ten years before.

Reading Sir Charles’ calm, matter-of-fact description of the “arrangement,” one detects something of the confidence he must have felt that it would develop into one of the most valuable of electrical measuring tools. But even he could scarcely have foreseen the number of forms the instrument would eventually take.

Of course, Sir Charles would have found the L&N laboratory-standard Anthony Pattern Bridge unnecessarily accurate by comparison with other instruments in use in 1843. Similarly, the Micromax Wheatstone Bridge Recorder would have been too advanced for his needs. But as the authority of his time on telegraphy, he’d have shared the modern appreciation of the Portable Test Set for fault location. And the Students’ Post-Office type Bridge would have been a big help, then as now, in teaching prospective electrical engineers.

For further information on these and other L&N Wheatstone Bridges, write us. We’ll be glad to send appropriate catalogs.
the latter half of the century that this study was inaugurated in America. Pioneers in the United States were Leo Lesquereux, with his studies on Alaskan fossil plants, and J. S. Newberry, with his studies of Tertiary plants from western United States, both sponsored and published by the Smithsonian Institution. They were followed by Lester F. Ward, curator of Paleobotany for many years and a great organizer and bibliographer whose researches for the Institution continued to enrich the science. Ward was fortunate in bringing to Washington two outstanding paleobotanists, David White and F. H. Knowlton, both then in their twenties, to carry on research as associate curators of the U. S. National Museum for the rest of their lives. White's work on the Coal Measures plants, especially of the eastern United States, is classic, while Knowlton's studies, first of the Fossil Forest and continuing with the Cretaceous and Tertiary floras of the western United States and Canada, resulted in many monographs forming the basis for subsequent researches in the present century.

Taxonomy

Finally, the Smithsonian has pioneered and has been active throughout its first century in its publications on taxonomy, a branch of learning little appreciated by the general public but a necessary adjunct in all branches of natural science. Rocks and minerals, animals, and plants have received special scientific names which necessarily must remain the same in all languages if they are to be useful as guides for students of all nationalities. Unfortunately, through lack of knowledge or other reasons the same species of rock or animal, for example, has often been described over and over again under different names, a proceeding that impairs its use in scientific work. Taxonomy, the science of systematic classification, remedies these defects in nomenclature. The student with access to an extensive library and a keen interest in reducing the duplicate names or "synonyms" to the original valid one will prepare catalogues, bibliographies, or indexes, whichever they may be called, a task requiring a comprehensive knowledge of the subject under study as well as extreme patience in searching the literature. Secretary Henry, the biologist, probably because of his association with paleontologist James Hall and with Prof. Baird, the naturalist who succeeded him, so appreciated the need for taxonomic research that the Smithsonian commenced publication on the subject as early as 1864 with F. B. Meek's check list of North American invertebrates. Within two years Conrad's work on Eocene fossils was issued, followed by a comprehensive catalogue of the Museum's Mesozoic and Cenozoic types. By 1876 studies in paleobotany had progressed to the point that a catalogue of Cretaceous and Tertiary plants by Lesquereux and later a similar but expanded work by Associate Curator Knowlton became necessary for proper bookkeeping in this study.

Invertebrate paleontology requires the largest number of publications to solve taxonomic problems. Sudder's "Nomenclator Zoologicus" (Museum Bulletin 19, 1882) dealt entirely with the proper classification of fossil and Recent genera. Assistant Curator Schuchert's bibliography of American fossil brachiopods (1897) was the last of such publications in the 19th century. Since 1900, however, more than 3,000 printed pages of synonymic bibliographies on Paleozoic invertebrate fossils alone, particularly echinoderms, Bryozoa, and Ostracoda, by members of the Museum staff, have been published and distributed to the libraries and interested students of the world.

Pioneers in a nation or an organization invariably bring its early days to mind. In a scientific institution such as the Smithsonian, even with its varied early interests, the term pioneer cannot be so restricted because of the new endeavors assumed as time passed. Accordingly, the Smithsonian has pioneered in quite recent years and expects to do so in the future, following Secretary Henry's original admonition always to cooperate to the fullest extent but not to compete with any organization doing the same type of work equally well.

Centennial Notes

The first hundred years of the Smithsonian Institution is the title of a finely illustrated, 64-page book by W. P. True, chief of the Editorial Division. This book, which is being published for wide distribution by the Institution, should prove of interest to the readers of *Science*.

A new three-cent postage stamp commemorating the Centennial of the Smithsonian Institution is being issued on 10 August.

A Centennial Exhibit is to open on 10 August in the foyers of the National Museum Building, Washington, D. C. The exhibit will continue through the month of September.

——1846-1946——