The winners of the $2,400 Westinghouse scholarships in the 6th Annual Science Talent Search at an awards banquet at the Hotel Statler, Washington, on March 4: Martin Karplus, Newtonville, Massachusetts, who plans to enter Harvard as a premedical student this fall, and Vera Radioslava Demerec, Cold Spring Harbor, New York, who plans to enter Swarthmore. Pictured with the winners are Harlow Shapley, president of AAAS and chairman of the Board of Trustees, Science Service; Vannevar Bush, who delivered a congratulatory address at the banquet; and Watson Davis, director of Science Service, who acted as toastmaster.

Published by the
American Association
for the
Advancement of Science

Medicine and National Health in the USSR
Stuart Mudd
The instruments shown here are excellent tools for calibration of thermocouples, when the measurement is made by comparison with thermometers rather than by measurements of known boiling and freezing points.

The couple to be calibrated is exposed to temperature simultaneously with a certified L&N electrical resistance thermometer. The couple’s emf is measured with a Type K-2 Potentiometer; the thermometer’s resistance, with a Type G-1 Mueller Bridge. From the calibration data of the thermometer, the couple’s emf-temperature relation is determined.

The two instruments make an excellent team. The G-1 Mueller Bridge is uncomplicated and easy to handle. Its accuracy is good for this service: limit of error, ±0.02% or ±0.001 ohm, whichever is larger. The Type K-2 Potentiometer is rapid and easy to read. Of its three ranges, the lowest (0-16 mv.) is especially suited to thermocouple work, and has a limit of error of only ±0.1 to 0.015%.

The G-1 Mueller Bridge is completely described in Catalog E-33C(1); the Type K-2 Potentiometer, in Catalog E-50B(3).
Logical Progression ---

--- is a major factor in the success of these two well-known bacteriology texts.

Jordan and Burrows’
Textbook of Bacteriology

Fourteenth Edition—Unquestionably, this text is one of the most complete presentations in the entire literature of bacteriology. Dr. Burrows has carefully gathered together the facts and he presents them in detail. At the same time he has maintained that simple and logical progression so important for complete student understanding. He leads smoothly into each stage of the study, beginning with orientation material and then progressing through each step until a thorough grasp of principles and application has been secured.

Currently important material has been well handled in this Fourteenth Edition and includes such subjects as bacteriological diagnosis, medical mycology, iso-antigens and antibodies. 242 valuable illustrations will be found here, and most of them are new for this edition. In short, this is a textbook of bacteriology which serves in a fashion that is practical and useful to the fullest degree.

By Edwin O. Jordan, Ph.D., Late Andrew McLeish Distinguished Service Professor of Bacteriology, University of Chicago; and William Burrows, Ph.D., Associate Professor of Bacteriology, University of Chicago. 909 pages, 6" x 9", 242 illustrations. $7.00

Greaves’ Elementary Bacteriology

Fifth Edition—By using simple, easily understood language, the authors have made this presentation of elementary bacteriology both absorbing and interesting. The student learns of the development of bacteriology as a science, and of the underlying theories and facts upon which the study is built. The forms, functions and characteristics of both beneficial and injurious microbes are explained and illustrated. From this general discussion of the fundamentals, the subject is developed in detail in its application to the life of man—in the arts and industries—to specific diseases and to immunization.

By Joseph E. Greaves, M.S., Ph.D., Professor of Bacteriology, Utah State Agricultural College; and Ethelyn O. Greaves, M.S., Ph.D., Professor of Nutrition and Dean of the School of Home Economics, Utah State Agricultural College. 613 pages, 54" x 74", with 169 illustrations. $4.00

W. B. SAUNDERS COMPANY

West Washington Square Philadelphia 5
CONTENTS

Programs for Medicine and National Health in the USSR: Stuart Mudd... 269

Chemical Research Conferences, 1947: W. George Parks 274

News and Notes... 277

Comments by Readers.. 282

Technical Papers

Effects of 2,4-D on Seed Germination and Respiration: Y. L. Hsueh and C. H. Lou 283

Prevention of Respiratory Embarrassment in Therapeutic Curarized Convulsions: Matthew Brody 285

Photoinactivation of Milk Fat Lipase and the Origin of Bitter Flavor in Milk: Vladimir N. Krukovsky. 286

The Origin and Evolution of Meiosis: L. R. Cleland 287

Are Lake Salmon Hereditarily Distinct?: A. G. Huntsman 289

Role of Glucose in Promoting Growth of Lactobacilli in Saliva: David Weisberger 290

In the Laboratory

High-Frequency Dielectric Heating in Heterogeneous Catalysis: V. I. Komarewsky 291

Method for Differential Staining of Mycorrhizal Roots: L. W. R. Jackson 291

A Blood Test for Estimating the Week of Pregnancy: Ernest W. Page 292

A Moist Chamber for Nerve-Muscle Experiments: F. A. Waterman 294

Homogenization of Sputum Specimens With a Paint-conditioning Machine: C. Eugene Woodruff 294

Estimation of Coenzyme I Through the Uptake of Oxygen: P. S. Krishnan 295

Book Reviews

Practical chemistry for medical students: William Klyne. Reviewed by John C. Krantz, Jr. 296

The methods of plane projective geometry based on the use of general homogeneous coordinates: E. A. Maxwell. Reviewed by E. P. Lane 296

Scientific Book Register .. 296

(Cover Photo by courtesy of Science Service.)

Change of address. Four weeks notice required for change of address. When ordering a change, please furnish an address stencil label from a recent issue. Address changes can be made only if the old as well as the new address is supplied.

Annual subscription, $7.50; single copies, $2.50; foreign postage (outside the Pan-American Union), $1.00 extra, Canadian postage, $1.50 extra. Remittances and orders for subscriptions and for single copies, notices of changes of address, and claims for missing numbers should be sent to the Circulation Department.

Entered as second-class matter January 17, 1947, at the postoffice at Baltimore, Maryland, under the act of March 3, 1879.
3 New Blakiston Books

Jones

INORGANIC CHEMISTRY

A new approach to beginning college chemistry, the text many teachers have asked for—based on modern concepts, new, well integrated illustrations with teaching value. Excellent practical problems, exercises suggestive of laboratory work. Can be used by various groups with or without previous chemistry study. Laboratory manual in preparation.

By W. NORTON JONES, Jr., Ph.D.,
Colorado State College of A. & M. A.

Colin

ELEMENTS OF GENETICS, 2nd. Ed.

Emphasis is given to the application of Mendelian principles to man and the roles played by heredity and environment to man. Correction of physical defects and improvement of performance are discussed. Many new problems included. A very teachable text. 22 Illus., 402 Pages, $3.50 (Dec. 1946)

By E. C. Colin, Ph.D., Chicago Teachers College

Stiles

HANDBOOK OF MICROSCOPIC CHARACTERISTICS OF TISSUES AND ORGANS, 3rd. Ed.

Dr. Melvin H. Knisely, in the Introduction, says: "The Handbook is a necessity... it has great value to students and the teacher because it assists rapid learning of a group of basic phrase-plus-picture concepts." 35 Illus., 214 Pages. $1.75 (Dec. 1946)

By Karl A. Stiles, Ph.D., Michigan State College

THE BLAKISTON COMPANY
PHILADELPHIA 5, PA.
Van Slyke Manometric
Blood Gas Apparatus

Phipps & Bird has adhered to Van Slyke specifications; thus there has been no change in principle or technique of measuring, but a more substantial construction, a better appearance, adjustable leveling bulb, new principle of manometer illumination, illumination of the reaction pipette, lights and motor are operated independently by lever switches, wash bottle is mounted with special care, and the glass tips of the suction and distilled water are held in convenient receptacles, contributing greatly to ease and accuracy in use.

Another new feature we have added is a protective shield of clear plastic mounted over the entire length of the manometer. The support stand is of welded sheet steel with a durable wrinkle finish. The motor, belt drive, rheostat and light are all enclosed.

The apparatus is supplied complete with glass parts as illustrated: 1—A22-380 Pipette, 1—A22-390 Water Jacket, 1—A22-400 Manometer, 1—A22-410 Thermometer, 1 ea. A22-420 Pipettes 0.1 and 0.2 ml, 1 ea. A22-430 Pipette 1.0 and 2.0 ml, 1—A50-280 Leveling Bulb, 1—A6-120 Two Liter Bottle, 1—32 oz. Wash Bottle. Instructions for care and assembling.

Operates on 115 volt, 60 cycle.
No. A22-370—Price complete............... $200.00

PHIPPS & BIRD, Inc.
Richmond, Virginia
Manufacturers of Physiology Equipment

1 bottle makes 1 liter of
NESSLER SOLUTION
quick handy foolproof

Simply dissolve 85 gr. Sodium Hydroxide in 800 ml distilled water: allow to cool: add Technicon Nessler Salt; add water to make one liter, and presto! you have Nessler Solution ready for use. Produces a clear amber solution with ammonia. Unaffected by carbonates. Remains stable for a long period.

TECHNICON COMPANY
215 East 149th St. * New York 51, N. Y.

NESSLER SALT
the simple, modern method for Nessler Solution
The water temperature will be just right for smooth, even spreading: never too hot or too cold. No melting paraffin to distort tissues; no folds or wrinkles. No bubbles due to frequent water change... temperature stays constant day in, day out. Bulletin 6320 gives particulars: send for it.

TECHNICON COMPANY, 215 E. 149th St., New York 1, N. Y.
SCIENCE SINCE 1500

By H. T. PLEDGE
Librarian, Science Museum of London

FROM THE TABLE OF CONTENTS

SCIENCE AND PRE-SCIENCE—From Ancient Greece to the second Renaissance. Pre-science: isolation; lack of specialist; symbolism; mysticism. State of certain sciences 1450-1500: perspective and anatomy; mechanics; mines and chemical crafts; lack of physics.

BIOLOGY BEFORE THE MICROSCOPE—Mode of exposition adopted in the book. Weakness of botany without technical terms; teleology and science. Commentators, artists and doctors; naturalistic and diagrammatic plates; Vesalius; the Paduan line. Weakness of physiology without the idea of the physical; Harvey and the pump-idea. Lack of microscopes the limiting factor here and in early embryology.

ASTRONOMY BEFORE THE TELESCOPE—Experiment and observation. Earth and sun rival centres before the modern period. Technical advances and the great explorations; mapping; the Iberian contribution. Copernicus, Brahe, Kepler; the German contribution. Stirrings of the idea of the physical.

THE 17TH CENTURY—War and order. Learned societies. Bacon and Descartes; philosophy and science; from the circle to the straight line as the “natural” path.

MATHEMATICS (1600-1800)—Geometry restarts: from perspective to projective geometry; from mapping and equations to coordinates. Infinity: gradients and areas and infinite series. 18th century: analytical mechanics; minimal theories again; doubts of the calculus; the “insoluble” problems—quintics and elliptic integrals; the ambition of formulation.

MICROSCOPY, CLASSIFICATION, GEOLOGY—The descriptive and observational sciences. “Classical” microscopy, embryology, spontaneous generation, preformationism. Classifying, naming, comparing; relation to physiology; spirit formal and static; Linnaeus, Cuvier. Geology separates from cosmology; parts played by volcanoes, mines, etc., in its history; Guettard and Desmaretz; Werner; Hutton; Cuvier.

THE 18TH CENTURY—Formalism and systematism: examples from medicine; reaction to revolution, political, agricultural, industrial. Premature applied science. Germany’s greatness still ahead.

EXPERIMENTAL SCIENCE I—Interdependence of experimental physics, chemistry, and physiology. Heat and gases as key ideas; their confusion (17th century) and separation (18th.). Vitalism and mechanism. Heat: thermometers, calorimetry, material theory. Chemistry: notes on technique. From principles (phlogiston) to substance (after Lavoisier) and weights. Oxygen moniam. Gases again; atoms and Dalton. Application to physiology; respiration.

EXPERIMENTAL SCIENCE II—Qualitative electricity and magnetism. Physiology (Haller, Galvani) gives the sensitive detector needed for the discovery of currents; electrolysis. Dualism in chemistry; Berzelius and professionalism; atomic weights; analysis systematised. Organic chemistry; isomers, radicals, types; anarchy of the fifties. Physiology; the tradition of great teachers; the cycles, especially of nitrogen; digestion; nerves and senses; Helmholz.

MATHEMATICAL PHYSICS—Certain ideas which always fascinate: vortices, crystals, waves; the second (c. 1800) leads to the triumph of the third in optics, but the first will be needed to complete the picture. Quantitative electricity and magnetism, ignoring dielectrics; historical importance of thermo electricity; mathematicians and picture-thinkers. Kinetic theory, energy (contribution of physiology), thermodynamics, statistics. Radiant energy. Electromagnetic theory; vortices enter from hydrodynamics and unite electricity and optics.

THE 19TH CENTURY—The world-wide spread of white man. The revolution opens the flood gates of French genius; the Romantic Epoch enchains Germany at first. Industrialism and the struggle for existence; mechanical models, statistics, continuity in English thought. Emergence of Germany.

19TH-CENTURY MATHEMATICS I AND II—Its philosophical character: rigour, generalised quantity and space. Gauss and theory of numbers. Continuity, function, complex variable. From quints to algebraic numbers, many-unit quantities, generalised algebras; also to groups, transformations and invariants; thus to geometry: non-Euclidean and n-dimensional; projective geometry; Klein, Poincare; differential equations and mechanics; sets of points; towards general topology. Philosophy of mathematics.

(Continued on following page)
"A Thorough-Going History of Science"

"The author takes the subject and the reader in his stride on a journey which must be ranked as a very able performance, indeed. The illustrations are excellent, the bibliography is unusually helpfully arranged, and the indices are full and satisfactory."

—M. F. Ashley Montagu, The New York Times

"H. T. Pledge, of the Science Museum, London, has given a remarkably complete account of mathematics, physics, chemistry, and biology in his period, based on careful scholarship, and he has included some original features. He has not overlooked the question of the social relation of science, which is now converting the history of science from a minor into a major subject. A standard book in all libraries, and in particular it will be a perfect science prize for educational institutions."

—The Manchester Guardian

FROM THE TABLE OF CONTENTS (Continued)

MAINLY ORGANIC CHEMISTRY—Experimental science again. End of the anarchy of the fifties in chemistry; groups of elements, homologous series; Avogadro's hypothesis; periodic law. Organic: crystals again, stereoisomerism; biochemistry and chemical industry; aromatics; typical constitutions. Notes on apparatus, especially chemical.

SURFACES AND IONS—Physical chemistry: balanced actions and thermodynamics. Electrochemistry; Raoult, osmosis; ionic dissociation theory, gas analogy. Colloids and surface chemistry. Catalysis and enzymes: surfaces again.

CYTOLOGY AND GENETICS—Cell division and union with the aid of new microtechnique; Weissmann. Ancient experiments in breeding; the part played by religious houses; pre-Mendel and Mendel; the gene; heredity and environment; the gene-complex; relation to evolution.

GROWTH AND UNITY OF THE INDIVIDUAL I—Embryology: cytological and evolutionary; experimental; technique of tissue culture; "rate genes." Nerves; neurons, integrative action; adrenaline and acetycholine, importance of ultra-sensitive instruments; electrochemical models for nerve and muscle.

GROWTH AND UNITY OF THE INDIVIDUAL II—Internal secretion; dependence of our knowledge on nerve and other operative advances; the integration of the individual; plant hormones. Deficiency diseases; metabolic thermodynamics; vitamins. Some biochemical points: vitamins, pigments, respiration, and photosynthesis.

ECOLOGY—Pigments continued (vision); comparative biochemistry; the interrelations of life, that is, ecology. Its chief ideas and economic relations; soil science; parasitism, fluctuations, their mathematics and relations to evolution.

MODERN EXPERIMENTAL PHYSICS—Vacuum pumps and tubes; electrons; radioactivity; the planetary atom; atomic number; isotopes; projectile physics and new ultimate particles.

QUANTUM THEORY—Statistical and radiational theories and their erroneous result. Interferometers; line spectra, and no explanation. Quanta; Bohr; correspondence principle; matrices and wave-mechanics; probability and uncertainty; the relativistic equation.

RELATIVITY AND COSMOLOGY—The interferometer and special relativity. General relativity; efforts to geometrise electromagnetism. Astrophysics: Laplace's hypothesis and the alternatives; the spectroscope and spectral classifications; the galaxy; stellar evolution. Cosmological consequences of general relativity; Einstein and de Sitter; Milne and Eddington.

REAL MATERIALS I AND II—Subjects of Chapters XIV and XV revived by fresh elements from physics: crystals (once more) and X-rays; from valency to lattice and (with quanta) to the architecture of the solid state. Surfaces again; oriented films. Fibres and proteins; "templates." From ideal to real materials; real gases and electrolytes; reaction kinetics, activation, chains, reactions at surfaces; real liquids, vortices, boundary layers, in relation to the weather, ships and aeroplanes; real solids, geophysics.

CONCLUDING DISCUSSION • BIBLIOGRAPHICAL NOTE • SUBJECT INDEX • NAME INDEX.

ALSO. ILLUSTRATIONS, GRAPHS, CHARTS, MAPS, Etc.

At your bookstore, or mail coupon below
A Diamond and the Rough

Optical lenses and prisms, formerly had to be separately and accurately mounted in pitch or plaster of Paris for rough and fine grinding and polishing. Today, more and more of these Bausch & Lomb optical elements are diamond milled before polishing. Optical parts are quickly and accurately set up in special precision jigs and speedily surfaced with diamonds on huge precision milling machines. Thus, today, Bausch & Lomb optical elements are fabricated with better control of dimensions... faster. Bausch & Lomb Optical Co., 642-C St. Paul St., Rochester 2, N.Y.

BAUSCH & LOMB
OPTICAL COMPANY
ROCHESTER 2, N.Y.

Cooperating with Men of Science since 1853
of special and artificial lighting; (b) laboratory for the hygiene of heating, ventilation and air conditioning in which there are special chambers for microclimate with the use of conditioned air. The staff of this Division is 14 persons. The chief of the Division is Professor S. I. Vetonkin, M.D.

The Division has as its basic problems the working out of hygienic problems for scientific basic planning, outfitting and improvement of dwellings and public buildings:

(a) Study of microclimate of reserved spaces (study of village buildings, air ventilation, large buildings, etc.). At the present time there is experimental study of few-storied buildings in Stalingrad, Moscow and abroad with the Division working on hygienic problems of normal dwellings, inner outfitting and arrangement of dwellings in the post-war period (expedition to Stalingrad and abroad).

(b) Study of climatic lighting and the physiological-hygienic basis of the method and norm of natural and artificial lighting of closed dwellings and open spaces. In the pre-war years, the laboratory of hygiene of lighting worked on the questions of: (1) lighting of schools, (2) lighting of medical establishments, (3) lighting of dwellings and (4) climatic light in Moscow. In subsequent years the laboratory is attacking the study of new sources of light (luminescent lamp) in a hygienic relation—physiological-hygienic purpose of luminescent lamp of low pressure mercury arc and also sterilamp (bactericide).

In the current year one doctor completes a dissertation under the direction of the laboratory of hygiene of dwellings on the theme: "Hygienic basis for lighting schools"; besides this, post-graduate students have carried out dissertations in collaboration with the Division on the theme: "Hygienic requirements for lighting medical institutions."

(7) History of hygienic thought in the USSR until the Revolution and in Soviet times.

(8) Network of scientific study and sanitary-prophylaxis establishments in the USSR.

(9) Home and municipal legislation in relation to sanitation and further perspectives.

(Continued in next week's issue.)

Officers of the AAAS, 1947

President: **Harlow Shapley, Harvard University**

President-Elect: **E. W. Sinnott, Yale University**

Chairman of Executive Committee: **James B. Conant, Harvard University**

EXECUTIVE COMMITTEE MEMBERS: A. J. Carlson, University of Chicago; Otis W. Caldwell, Boyce Thompson Institute; Fernandus Payne, Indiana University; Walter R. Miles, Yale University; Charles F. Kettering, General Motors Corporation; Kirtley F. Mather, Harvard University; E. C. Stakman, University Farm, St. Paul; Arthur H. Compton, Washington University; G. A. Baisell, Yale University; and F. R. Moulton, 1515 Massachusetts Avenue, N.W., Washington, D. C.

SECRETARIES

Mathematics (A): Raymond W. Brink, University of Minnesota, Minneapolis, Minnesota

Physics (B): Joseph C. Boyce, New York University, New York City

Chemistry (C): Ed. F. Degering, Purdue University, LaFayette, Indiana

Astronomy (D): Charles C. Wylie, University of Iowa, Iowa City, Iowa

Geology and Geography (E): George W. White, Ohio State University, Columbus, Ohio

Zoological Sciences (F): J. William Buchanan, Northwestern University, Evanston, Illinois

Botanical Sciences (G): George W. Martin, University of Iowa, Iowa City, Iowa

Anthropology (H): Marian W. Smith, Columbia University, New York City

Psychology (I): Harold E. Burtt, Ohio State University, Columbus, Ohio

Social and Economic Sciences (K): Successor to Albert E. Waugh (resigned) not yet announced.

History and Philosophy of Science (L): Raymond J. Seeger, Bureau of Ordnance, Navy Department, Washington, D. C.

Engineering (M): Frank D. Carvin, Newark College of Engineering, Newark, New Jersey

Medical Sciences (N): Malcolm H. Soule, University of Michigan, Ann Arbor, Michigan

Agriculture (O): Ernest E. DeTurk, University of Illinois, Urbana, Illinois

Education (Q): Dean A. Worcester, University of Nebraska, Lincoln, Nebraska

273
ology, American Institute of Nutrition, and American Association of Immunologists.

The Pittsburgh Geological Society will hold a symposium on the Trenton and Sub-Trenton strata of the Appalachian Area May 16 at the William Penn Hotel, Pittsburgh. Papers will be presented at morning and afternoon sessions, and a banquet will be held in the evening.

The purpose of the symposium is to bring together all information possible on the Trenton and Sub-Trenton rocks of the Appalachian Basin from the surface section on the eastern and northwestern outcrop belt to the subsurface section across the Basin as interpreted by well records and sample studies. The stratigraphy, structure, and economic aspects of this portion of the geological column will be correlated for the entire Appalachian Basin.

John T. Galey is chairman of the symposium committee.

Elections

The Oregon Academy of Science elected the following officers at its 5th annual meeting in Portland, Oregon, January 17-18: R. R. Huestis, Eugene, president; Warren D. Smith, Eugene, vice-president; F. A. Gilfillan, Corvallis, secretary; and Pierre Van Ryselberghe, Eugene, treasurer.

The southern section of the American Society of Plant Physiologists elected the following officers for 1947: O. A. Leonard, Mississippi State College, chairman; Ivan E. Miles, North Carolina Department of Agriculture, vice-chairman; and Henry C. Harris, Florida Agricultural Experiment Station, secretary-treasurer. H. P. Cooper, Clemson College, South Carolina, E. M. Emmert, University of Kentucky, and S. F. Thornton, Norfolk, Virginia, were elected members of the executive committee.

A new insecticide, TEP, which will kill some important insect pests not affected by DDT, has been announced by Leo R. Teton, acting chief, Illinois Natural History Survey.

Disclosure was made by George F. Ludvik, working in the Natural History Survey laboratories on a Monsanto Chemical Company fellowship under George C. Decker, entomologist of the Natural History Survey and the Illinois Agricultural Experiment Station.

The new insecticide, tetraethyl pyrophosphate, which for brevity can be shortened to TEP, has been unusually effective in laboratory tests against aphids and mites, destructive crop pests difficult or impossible to control by DDT. The shortage of nicotine, the poison usually relied upon for control of aphids on peas, apples, potatoes, peaches, and other crops, makes discovery of TEP especially important at this time, Dr. Decker pointed out. Laboratory tests indicate that it is more than 10 times as toxic to aphids as nicotine alkaloid.

TEP was discovered in studying an extensive series of phosphorus compounds. It has been found to be approximately three times as toxic to insects as hexaethyl tetraphosphate, an insecticide developed by the Germans during the war as a substitute for nicotine.

An advantage of TEP, Dr. Decker explained, is that it does not appear to leave a poisonous residue. Tests being conducted indicate that this product will decompose within a few days after application, and food products on which it is used may not need to be washed before marketing.

Before being employed on the Monsanto research project, Mr. Ludvik served 40 months in the Army Medical Corps. He was graduated and received his Master's degree from the University of Illinois and is continuing graduate study and research on insect pests of crops.

A letter from Oscar Orias, Córdoba, Argentina, indicates that a private institution for research in the fundamental branches of medicine, Instituto de Investigación Médica para Promoción de la Medicina Científica, has been organized with private funds in Córdoba. Dr. Orias, director of the Institute, was at one time traveling fellow of the Rockefeller Foundation, working at Western Reserve and Harvard Universities. On the staff are Enrique Moisset de Espanes, who was at Harvard University in the same capacity, and Inés L. C. de Allende, who visited the University of Rochester.

Dr. Orias writes: "We all had to resign our positions in the Institute of Physiology in the Medical School of the University of Córdoba on account of the situation created in the Argentine Universities by the Perón regime."

The new Institute, he said, will be devoted to research in endocrinology, pharmacology, and physiology of the circulation of the blood. The address is 25 de Mayo 1122, Córdoba.

Recent Deaths

Horace A. Shonle, 54, director of the original chemical research division of Eli Lilly & Company, Indianapolis, and authority on barbituric compounds, died February 24 following a brief illness. Mr. Shonle discovered amytal in 1924 and was later responsible for the discovery of seconal.

A. R. Mann, 66, agricultural economist and former provost of Cornell University, died on February 21 in New York City upon his return from a special assignment in Europe for the War Department.

Lily Bell Sefton Deatrick, 63, professor of chemistry, West Virginia University, Morgantown, died November 25 in Morgantown. She is survived by her husband, Eugene P. Deatrick, also of the Department of Chemistry, West Virginia University.

Make Plans for . . .

Crystallographic Society, 2nd annual meeting, March 19-21, U. S. Naval Academy, Annapolis, Maryland.

Western Metal Congress and Exposition, fifth, March 22-27, Civic Auditoriums, Oakland, California.

American Association of Petroleum Geologists, 32nd annual meeting, March 24-27, Los Angeles, California.

Midwest Power Conference, March 31-April 2, Palmer House, Chicago.

American Association of Anatomists, annual meeting, April 3-5, Mount Royal Hotel, Montreal, Canada.

Institute of Mathematical Statistics, meeting on stochastic processes and noise, April 24-25, New York City.