THE ATOMIC THEORY FROM THE CHEMICAL STANDPOINT.*

The Atomic Theory is the most fundamental hypothesis of the chemistry of to-day and plays a greater part in this than in any other science, and to give an account of all the classes of chemical phenomena which it is sought to explain by its aid would require far more time than I have at my disposal. I shall limit myself to giving as briefly as possible the main facts which have led chemists to adopt it and to stating which of the various properties which have been ascribed to the atoms are, and which are not, essential to its use in chemistry, and what properties may be attributed to them, solely on the basis of chemical experiments.

The question whether any given portion of matter is continuous, absolutely the same throughout, even if infinitely divided, or whether it consists of particles separated by comparatively empty space, is, of course, almost as old as philosophic thought. The beginnings of chemistry lie still further back; the first man who questioned why wood burns, or why grape juice turns to wine, was an incipient chemist.

About the middle of the seventeenth century, Robert Boyle, who originated our present conception of element and compound, applied the atomic theory to chemistry, in-

---

* Read before a joint meeting of the Chemical and Philosophical Societies of Washington, November 25, 1899.
Science 11 (277), 601-640.

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved: exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title Science is a registered trademark of AAAS.