An Academic Question

In its classical formulation, the problem of laissez faire versus governmental spending and planning has been limited pretty much to economic matters. But the past 15 years have seen a considerable increase in the public funds devoted to scientific research and a growing concern with the place of science in public education. Consequently, the problem of the role of the state in the affairs of the individual has, in effect, been broadened to include the Government's responsibility to science.

Before attempting to define this responsibility, it is important to be clear about the actual enterprise toward which the public interest is presently directed. Unfortunately, a wish to manipulate the course of nature does not necessarily imply a wish to understand the natural laws upon which such control is based. To the consumer of scientific knowledge, that is to say, to the man who rubs the lamp and commands the jinni, the achievements of science are nothing more nor less than feats of magic. The various agencies devoted to science might just as well be given such titles as the National Academy of Magic, the National Magic Foundation, and the American Association for the Advancement of Magic, and one of the most pressing problems of the day might just as well be the shortage of magicians.

The time is past when one may speak of disinterested research, of scientists following the argument wherever it leads. We have all learned that sooner or later research leads to wealth and power, if not for scientists themselves, then for others. But today, as in the past, scientists are often motivated by a somewhat different set of values. Unfortunately, to explain, say, intellectual curiosity to someone who does not have it is not easy. The delights of research are likely to sound as unconvincing as the claim that virtue is its own reward. But if such explanation is difficult, scientists at least share this difficulty with poets, artists, historians, humanists, and other persons.

In an age when magic is at a premium, there is a tendency to see the Government's responsibility to science in terms of what science can do. With our national security under constant threat and with the general welfare usually understood to mean material welfare, it may be an academic question to introduce another viewpoint. But we suggest that, in addition to its responsibility to magic, the Government has a responsibility to science, and that this responsibility extends to other enterprises of culture and scholarship.—J. T.
The RSCO Model 2200 MICROTOME KNIFE SHARPENER, an improved design based on the well-known glass wheel and liquid abrasive suspension principle, keeps microtome knives in excellent condition for the most exacting of sectioning requirements, and it produces a sharpened and polished edge far superior to that obtainable by other methods.
How the scientific world shares in fruits of the telephone art

In their work to improve telephony the scientists and engineers of Bell Telephone Laboratories make important findings in many sciences. They thoroughly report these findings in professional journals and magazines. But sometimes, as knowledge accumulates in a vital field, a “treatment in depth” is prepared in book form.

Bell Laboratories authors have written 36 books to date and others are in preparation. Many have become classics in the Laboratories’ primary field of communications. Many have become standard works of wide application because they provide a fundamental guide for technologies in other fields. For example, the design of automatic switching systems is of primary importance in computers; statistical quality control provides the indispensable basis for economical manufacture. Through their books these scientists and engineers and the Laboratories attempt to repay benefits they receive from the published works of others.

The pictures on the opposite page show some Bell Laboratories authors of technical books. A complete listing of titles may be obtained by sending in this coupon.

Publication Department, Dept. 36
BELLS TELEPHONE LABORATORIES
463 West Street, New York 14, N. Y.

Gentlemen:
Please send me a listing of titles, authors and publishers of books written by Bell Telephone Laboratories authors.

Name..........................

Street..........................

City............................ State

BELL TELEPHONE LABORATORIES
World center of communications research and development
...the authors

Most of the books written by Laboratories authors are published by D. Van Nostrand Company. Other publishers include John Wiley & Sons and McGraw-Hill. Subjects include speech and hearing, mathematics, transmission and switching circuits, networks and wave filters, quality control, transducers, servomechanisms, quartz crystals, capacitors, visible speech, earth conduction, radar, electron beams, microwaves, waveguides, antennas, traveling-wave tubes, semiconductors, ferromagnetism.

John R. Pierce, Ph.D., California Inst. of Tech., author of “Traveling-Wave Tubes.”

Richard M. Bozorth, Ph.D., California Inst. of Tech., author of “Ferromagnetism.”

W. Thornton Read, M.S., Brown University, author of “Dislocations in Crystals.”

Hendrik W. Bode, Ph.D., Columbia University, author of “Network Analysis and Feedback Amplifier Design.”

Walter A. Shewhart, Ph.D., University of California, author of “Economic Control of Quality of Manufactured Product.”

manifest his difficulties may not be a function of his physiological status. Certainly in psychiatry there is a wide divergence of opinion whether schizophrenia is a single entity or whether it is a disease characterized by the uniqueness of the individual or a reaction formation. To the psychiatrist, each patient is unique. But this has little bearing on the problem whether a single biochemical factor is present.

Horwitt has recognized this by his statement that it “may not” be a function of his physiological status—conversely it “may.” In medicine, it is not at all unusual to find that diseases with fairly simple biochemical defects express themselves in terms of personality in unique ways. I am convinced that, if the factors of hyperthyroidism were unknown today, we would argue about it in the same way. During the latter part of the last century, there were many passionate arguments regarding the causes of paresis.

I am disturbed at the expression “the patient chooses to manifest.” This implies again the entire concept of reaction formation with subconscious selection of the type of reaction. Apparently, Horwitt uses psychiatric hypothesis as fact when it may in fact be artefact [P. Bailey, Am. J. Psychiat. 113, 387 (1956)].

The first recommendation that estimation of tension and anxiety be made would be useful if this were possible. I have searched in vain for a test that will reliably measure this variable. One can often decide whether a person is anxious or not. To quantify this will be a major achievement. To ask one to measure a variable without telling him which measure to use is the counsel of futility. The second recommendation, that no research be done until patients have balanced at least 3 months, removes pretty effectively from biochemistry the vast majority of acute schizophrenics, leaving a residue of chronic hospitalized patients. Perhaps this is desirable, but one should know clearly the result of one's recommendation.

Finally, regarding urine collections, overnight samples from patients and controls may lead to erroneous conclusions. I fear that 24-hour samples will do the same. One ought to combine the best of both methods and make measurements on urine collected at given intervals over the 24-hour period.

Finally, in contrast to Horwitt's, it is my belief that psychiatrists use too freely the concept of cause and effect and that biochemists usually are not preoccupied with these matters. This falls within the realm of philosophy. Writing about Galileo, Newman states: “As we read his writings we instinctively feel at home: we know that we have reached the method of physical science which is still in use. Galileo's primary interest was to discover 'how' rather than 'why' things work” [J. R. Newman, The World of Mathematics (Simon and Schuster, New York, 1956), vol. 2, p. 726]. Science deals with the rational explanation of observable phenomena. In the area of schizophrenia, it is of no utility to discover what may be the cause—there are undoubtedly many "causes." We are concerned with the factors that transform a set of causes into a set of clinical symptoms and signs. In medicine, we do not treat causes—we treat those variables most easily modified, and these may be physiological, psychological, electric, or combinations of these.

The paper by Horwitt will make many biochemists aware of controllable factors which they should have learned in college. But the biochemist must not be seduced by analytic dogma that depends solely on the word of the master. In psychiatry today we need more of the cold breath of reason.

A. Hoffer

University Hospital, Saskatoon, Saskatchewan

I am pleased by A. Hoffer's reaction to my article "Fact and artifact in the biology of schizophrenia"; after 20 years of close association with psychiatrists and their patients, one learns to recognize defensive reactions.

As for the particulars with which Hoffer chose to disagree, I am sure that they are less important than the generalization that too many papers are published in this field which do not meet the accepted standards of the scientific method. It is time that some biologists (including psychiatrists attempting to be biochemists and biochemists attempting to be psychiatrists) stop belcoding the literature with reports of poorly controlled experiments that often catalyze extensive and expensive reinvestigations, because the factors of stress, nutritional state, relative physical activity, and of liver function are not controlled. Some day it will be possible to differentiate with greater accuracy the stresses of schizophrenia from those of other diseases by means of biochemistry. This day will come sooner if we improve our methods of controlling the variables under discussion.

M. K. Horwitt

Elgin State Hospital, Elgin, Illinois

No Visa Difficulties

In confirmation of Walter M. Rutherford's letter to Thomas J. Killian, quoted in the editorial "Scotching a damaging rumor" [Science 125, 7 (4 Jan. 1957)], I should like to report that at least six (Western) European scientists who had made one or more visits to Rus-
EQUIPMENT NEWS

The information reported here is obtained from manufacturers and from other sources considered to be reliable. Science does not assume responsibility for the accuracy of the information. All inquiries concerning items listed should be addressed to Science, Room 740, 11 W. 42 St., New York 36, N.Y. Include the name(s) of the manufacturer(s) and the department number(s).

- **BOTTLE ROTATOR-OSCILLATOR** accommodates 20 32-oz test bottles simultaneously. The unit measures 49 by 10 by 14 in. and weighs 75 lb. Bottles are held in place by individually hinged, spring-loaded clips. One model oscillates through 90 deg; another through 360 deg. (Labline, Inc., Dept. S196)

- **AREA MONITOR** incorporating a 3-cycle logarithmic count-rate meter is available with either a beta-gamma sensitive GM probe or with a gamma-sensitive scintillation probe. Visual and audible alarms are provided. A calibrated radioactive test sample and a 3600 cy/min test signal are included. Range is 50 to 50,000 count/min. (Nuclear Measurements Corp., Dept. S170)

- **RECORDING ELLIPSOMETER** permits the measurement and recording of changes of thickness of very thin transparent films on a flat metal mirror. The instrument is based on the functional relationship between ellipticity of reflected polarized light and the thickness of the film. Monomolecular layers may be studied in this way. Sensitivity is better than 0.5 A in the most sensitive thickness range. For materials of refractive index near 1.5, this range is at a thickness of approximately 1000 A. To bring observations into this range, the metal reflecting surface is first coated with a suitable background material. (O. C. Rudolph and Sons, Dept. S175)

- **pH METER** model 85 is a line-operated instrument said to have an accuracy of 0.1 pH unit. Range is 0 to 14 without switching. Either a combination glass and calomel electrode or separate electrodes are furnished. (Photovolt Corp., Dept. S187)

- **SURFACE TEMPERATURE** is measured by a tape-resistor temperature-sensing element, 1/4 in. by 5/16 in., which is applied by pressing onto the surface. These resistors, available in ranges from -300° to 400°F, furnish up to 5 v output without amplification. Accuracy is ±2 percent of full scale, and precision is ±0.5 percent of full scale. (Trans-Sonics, Inc., Dept. S178)

- **ORGANIC CHEMICALS** made by Mattheson, Coleman and Bell and available for immediate delivery are listed in a catalog. (Chicago Apparatus Co., Dept. S179)

- **MAXIMUM-MINIMUM THERMOMETERS** of stainless steel are of direct-drive, bimetallic type. Two ancillary pointers that can be set against the high and low sides of the indicating pointer move with the pointer in each direction, remaining at the maximum and minimum readings until reset. The setting knob is hermetically sealed through the glass window. (Pacific Transducer Corp., Dept. S182)

- **VACUUM FURNACE** can be used for melting, annealing, brazing, sintering, and degassing. The model F-1212 accommodates a 3- by 6-in. zirconia crucible and provides temperatures to 2000°C. The vacuum system includes a
from the Greek "without pressure"

APIEZON... meaning "without pressure"

APIEZON OILS WAXES GREASES

These Apiezon products have the recognition of leading scientists who accord them top preference for high vacuum work. Because of the exceedingly low vapor pressure of all these oil distillates, at usual room temperatures, they are in great demand for all sorts of high vacuum work. Their vapor pressures are as low as 10⁻⁶ mm. Hg., and even unmeasurable at room temperature.

James G. Biddle Co.
Electrical and Scientific Instruments
1316 Arch Street—Philadelphia 7, Penna.

For applications, working characteristics and list prices, write for Bulletin 43-S.

NEW

Prentice-Hall Texts

• SOLID STATE PHYSICS

by A. J. DEKKER, University of Minnesota

Based on nine years' teaching experience in the field of solid state physics, this new text is useful to students of chemistry, electrical engineering, and metallurgy as well as physics.

Outstanding features: 1) first 8 chapters require no quantum mechanics — an elementary course in atomic physics is sufficient background for the non-physics student; 2) problem set provided at end of each chapter; 3) first half of Chapter 10 (on band theory of solids) can serve as basis for discussion of semi-conductors.

In addition, the text offers a clear exposition of the physical reasoning and the physical models on which the interpretation of the observed properties of solids is based.

544 pages. 6" × 9". To be published April 1957.

Price to be announced

• ACOUSTICS

by JOSEPH L. HUNTER, John Carroll University

This new book is based on those subjects of major interest in the acoustics field today. The theoretical chapters have been written to supply all the necessary physical and mathematical background for an understanding of the subject.

Divided into two parts, Part I gives a thorough treatment of the wave and vibration fundamentals that compose classical acoustics. Part II is concerned with the applied fields of present-day acoustics, including some of the newer concepts. Among these are the treatments of noise and articulation index, reciprocity theory and the theory of molecular relaxation.

Several topics are treated for the first time on the undergraduate level. Typical of these are the theory of absorption in fluids, the theory of the interferometer, and the basic theory of the articulation index.

approx. 480 pages. 6" × 9". To be published April 1957.

Price to be announced

approval copies available from

Prentice-Hall, Inc.
Englewood Cliffs, New Jersey
4-in., 320-lit/sec diffusion pump with a liquid-nitrogen cold trap. A combination thermocouple-ionization gage measures the vacuum. (High Vacuum Equipment Corp., Dept. S184)

- STEREO MICROSCOPE uses 8 x Kellner eyepieces and two sets of objectives on a revolving turret to provide magnifications of 21 and 34. Working distance is up to 3 in. (Edmund Scientific Co., Dept. S181)

- ISOLATED WORK SPACE 3 ft long, 2 ft high, and 28 in. deep is provided by a chamber that has its own air supply, exhaust system, and services. Unit can be used closed or open. (Fisher Scientific Co., Dept. S183)

- POWER SUPPLY for transistor work furnishes 0 to 50 v d-c (continuously variable) at current of 0 to 1000 ma, as well as 6.3 v a-c at 10 amp. Change of input voltage from 105 to 125 v results in 0.1 percent change in output voltage. Ripple is 3 mv r.m.s. for 50 v, 1000 ma output, and regulation at the same output is 80 mv, no load to full load. Output voltage is set by a three-turn Helipot. (Dressen-Barnes Corp., Dept. S185)

- NEEDLE CLEANER cleans 1 to 36 needles collected from used Vacutainers. Connection to filter pump draws detergent, water, and disinfectant through needles. (American Hospital Supply Corp., Dept. S186)

- ACTIVITY METER for quantitative recording of motor activity in rats and mice consists of a photoelectric sensing chamber that operates a remote counting unit for registering the animal's movements. (Metro Industries, Dept. S188)

- GLASS FRACTIONATING COLUMNS and auxiliaries are described in an 8-page catalog. (Glass Engineering Laboratories, Dept. S190)

- GAS STERILIZER uses a mixture of ethylene oxide, carbon dioxide, and water vapor to sterilize temperaturesensitive objects. Gas is introduced after evacuation of sterilization chamber and is removed by evacuation. Factors of time, temperature, humidity, and gas concentration are automatically controlled. A typical cycle is 4 hr at 150°F. (Wilmot Castle Co., Dept. S191)

- RECORDER permits 400 linear inches of on-off information to be noted on a 6- by 14-in. chart. The record is made as a spiral trace on a drum-supported, waxpaper chart. Drum periods from 4 min to 24 hr can be furnished. (Correll and Gorrell, Dept. S193)

- 95% NITROGEN 15 ISO TOPE

Standard Forms: — Nitric acid, nitrates, ammonium salts, cyanides, potassium phthalimide, nitric oxide, nitrogen dioxide, nitrogen.

Write for Technical Bulletin 256A

ISOMET CORPORATION
P.O. Box 34
Palisades Park,
New Jersey