Ups and Downs in Research Support

The United States debt is approaching its statutory limit. This fact is the primary justification for the recent order to the Department of Defense and other Federal agencies to reduce expenses. In the application of this general order to specific budgets, one of the most drastic of the cuts reduced the funds of the Office of Scientific Research—the Air Force office with responsibility for supporting basic research—to half of its appropriated $16 million. Since $8 million was barely sufficient to meet obligations already incurred, new contracts could not be written and most expiring contracts could not be renewed.

Repercussions were immediate, and went far beyond the enforced alteration of personal and research plans of a number of scientists. According to Aviation Week, one university announced that it would accept no more Air Force contracts for basic research because of the difficulty of working under such financial uncertainty. Scientific advisors to the Government and directors of military research programs protested that such sudden changes caused irreparable harm to the military research program, that the sudden termination of a contract not only produces immediate disruption but also deprives everyone concerned of much of the potential benefit of the money invested during previous years, and that the military services were weakening their ties with civilian science.

These arguments have led to a partial restoration of the cuts. The Office of Scientific Research has had its budget restored to the $16 million level. But not all military research and development agencies will be so fortunate, and, indeed, the restoration of this one fund is likely to be at the expense of other research budgets.

Restoration of the Office of Scientific Research funds will be of immediate satisfaction to the office and its contractors, but the basic problem remains untouched, and is in fact well illustrated by the rapidity of the recent reduction and restoration. The officers responsible for research planning and administration understand clearly that basic research is an investment, that one cannot walk into a research laboratory and buy a bit of research off the shelf. They know that time is required to organize an effective research staff and program, and that the return on money invested in basic research is normally a cumulative one spread over a number of years. These points are widely understood, but not widely enough, so it is encouraging to note the understanding of the nature of basic research expressed by the new Secretary of Defense in his first press conference.

The fundamental problem involved cannot be solved until the importance of continuity is generally recognized. Permanence of support of a particular contract is not necessary and neither is a steadily rising budget, but continuity and advance planning are. A moderately steady amount, at any level, will bring a better research return than will widely fluctuating amounts that average at the same level. The current difficulties provide an object lesson on the importance of damping out big swings in basic research expenditures, just as the current pressure to catch up on the earth satellite program points up the error of the erratic earlier support of rocket research.

This is one aspect of a more general issue. The military services have decided that they should contribute to the support of basic research. Although this decision has executive and legislative endorsement, it does not yet have unanimous support throughout the Department of Defense. Nevertheless, the decision will probably prevail, and the services will continue to support basic research. That being the case, it appears to be an obligation of the officers and civilians responsible for over-all administration to consult with their own research administrators and to learn how to make the military support as effective as possible.—D.W.
They’re wiring the seas for sound

These five Bell Labs scientists and engineers may never “go down to the sea in ships.” Yet, they’re part of one of the most exciting sea adventures of modern times. Along with many other specialists, they are developing the deep-sea telephone cable systems of the future.

Here’s how they join many phases of communications science and engineering—to bring people who are oceans apart within speaking distance.

F. J. Herr, M.S., Stevens Institute, is concerned with systems design and analysis. He studies the feasibility of new approaches and carries out analysis programs to select optimum parameters for a proposed system design.

S. T. Brewer, M.S. in E.E., Purdue, communications and electronics engineer, explores new designs for sea-bottom amplifiers needed to step up power of hundreds of simultaneous telephone conversations.

L. R. Snoke, B.S. in Forestry, Penn State, is the team biologist. He investigates the resistance of materials to chemical and microbiological attack in sea water. Materials are evaluated both in the laboratory and in the ocean.

E. E. Zajac, Ph.D. in Engineering Mechanics, Stanford, is a mathematician. He studies the kinematics of cable laying and recovery. Cable’s dynamic characteristics, ship’s motion, the mountains and valleys in the ocean bottom—all must be taken into account.

F. W. Kinsman, Ph.D. in Engineering, Cornell, solves the shipboard problems of storage, handling and “overboarding” of cable. New machinery for laying cable is being developed.

Deep-sea cables once were limited to transmitting telegraph signals. Bell Labs research gave the long underwater cable a voice. New research and development at the Labs will make this voice even more useful.
Now your research technicians can work in safety never before achieved. The Blickman Micro-Biological Safety Cabinet gives positive protection from infectious micro-organisms, live virus, contaminated or infectious animals or radio-active materials used for medical or biological research. Constructed of heavy-duty stainless steel, the safety cabinet is available in 36” or 48” lengths.

Overall height of the unit is 28” and width measures 26”.

A feature of the Blickman cabinet is the seamless crevice-free, round corner construction that simplifies cleaning and decontamination. Send for Technical Bulletin A-6 or describe your specific problems. Write to S. Blickman, 6910 Gregory Avenue, Weehawken, New Jersey.
Another NEW UNITRON:
An INVERTED Microscope
for Transparent Specimens

Works with gravity, not against it!
Place a jar of fluid directly on the micro-
scope stage and examine the contents at
magnifications up to 2000X. The logical
way to study protists, plankton and
chemical reactions involving precipitation,
crystallization, solubility, etc. Equally
efficient for ordinary glass slides. Ideal for
use with a micromanipulator.

croft, Dept. of Statistics, Iowa State Col-
lege, Ames).
Conference on Scientific Editorial Prob-
lems, annual (G. L. Seielstad, Applied
Physics Lab., Johns Hopkins Univ., Silver
Conference on Scientific Manpower,
audial (T. J. Mills, National Science
Ecological Soc. of America (W. A.
Lindsey, Dept. of Biological Sciences, Pur-
Metric Assoc. (J. T. Johnson, 694 West
11 St., Claremont, Calif.).
National Acad. of Economics and Po-
itical Science (D. P. Ray, Hall of Gov-
ernment, George Washington Univ.,
Washington, D.C.).
National Assoc. of Biology Teachers,
audial (Miss I. Hollenbeck, Southern
Oregon College of Education, Ashland).
26-31 Dec.
National Assoc. for Research in Science
Teaching (G. G. Mallinson, Western
Michigan College, Kalamazoo). 26-30
Dec.
National Assoc. of Science Writers (J.
Troan, Pittsburgh Press, Pittsburgh, Pa.).
National Council of Teachers of Mathe-
matics (P. Peak, College of Education,
National Geographic Soc. (W. R. Gray,
NGS, 16th and M Sts., NW, Washington
6). 29 Dec.
National Science Teachers Assoc. (R.
W. Schulz, Emmerich Manual Training
High School, 2405 Madison Ave., Indian-
National Speleological Soc. (Brother G.
Nicholas, LaSalle College, 20th and Obey
Philosophy of Science Assoc. (C. W.
Churchman, Case Inst. of Technology,
Cleveland, Ohio).
Scientific Research Soc. of America,
audial (D. B. Prentice, 56 Hillhouse Ave.,
New Haven 11, Conn.). 27 Dec.
Sigma Delta Epsilon, annual (Miss M.
Chalmers, Dept. of Chemistry, Purdue
Sigma Pi Sigma (M. W. White, Penn-
sylvania State Univ., University Park).
27 Dec.
Society for the Advancement of Crimi-
ology (D. E. J. MacNamara, New York
Inst. of Criminology, 40 E. 40 St., New
Society for General Systems Research,
audial (R. L. Meier, Mental Health Re-
search Inst., Ann Arbor, Mich.).
Society for Industrial Microbiology,
Washington Section (W. N. Ezekiel, Bu-
Society for Investigative Dermatology
(H. Berman, Univ. of Pennsylvania
School of Medicine, Philadelphia 3). 28-
29 Dec.
Society of the Sigma Xi, annual (T. T.
Holme, 56 Hillhouse Ave., New Haven
11, Conn.). 27 Dec.
Society of Systematic Zoology, annual
(R. E. Blackwelder, Box 900, Victor,
United Chapters of Phi Beta Kappa,
audial address (C. Billman, 1811 Q St.,
27. Association for Symbolic Logic.,
Cambridge, Mass. (J. Barlaz, Rutgers
Univ., New Brunswick, N.J.)

This AIR-COOLED
CONDENSER produces a
HIGHER VACUUM

● Using air as the cooling medium, the
Niagara Aero Vapor Condenser
produces a higher vacuum than other
type condensers, and with
more economy of power and steam.
It sustains its full capacity in cool-
ing or condensing with no more
than a nominal cooling water require-
ment, eliminating entirely your prob-
lems of water supply and disposal.
It holds constant the liquid or va-
por temperature producing always
uniform products and giving maxi-
mum production.

Non-condensibles are effectively
separated at the condensate outlet,
with sub-cooling, after separation
for higher vacuum pump efficiency.

Niagara Aero Vapor Condenser
can be mounted directly on the steel
structure of your evaporator or dis-
tillation column. Its operation is
dependable; its maintenance is not
troublesome or expensive.

For more information write for Bulletin 129R

NIAGARA BLOWER COMPANY
Over 35 years of Service in Industrial
Air Engineering
Dept. 5-10, 405 Lexington Avenue
NEW YORK 17, N. Y.
District Engineers
in Principal Cities of U. S. and Canada

SCIENCE, VOL. 126
DANGER!
DO NOT STOP

... that's right—when knives have been honed on the new automatic E & G Microtome Knife Sharpener—stropping will actually impair their super sharp edges!

This instrument, the world's finest microtome knife sharpener, was originally developed at the University of California at Los Angeles to meet the exacting requirements for ultra-thin sectioning—but has proven itself even more efficient for routine sectioning.

The new E & G Microtome Knife Sharpener, with its special, high frequency vibration honing plate, and knife holder which automatically turns, accommodates knives up to 185 mm. in length. It is compact, sturdy and easy to clean, and is so automatic that it can be easily operated by your laboratory personnel.

For further information on the unparalleled new automatic E & G Microtome Knife Sharpener, write to

ERB & GRAY SCIENTIFIC
854 S. FIGUEROA ST. LOS ANGELES 17, CALIF.

THE NEW RSCO
AUTOMATIC FRACTION COLLECTOR

Check these Features!

VERSATILITY
- Metering by Volumetric Siphoning, Timing or Drop Counting
- Operation with multiple columns or with single column and swivel funnel
- 24" and 15" diam Turntables accommodating 90 to 500 tubes of 10 to 25 mm diam

RELIABILITY
- Positive indexing system
- Funnel drains into output container at end of run
- Automatic stop accessory turns off columns at end of run
- Motor and drive mechanism sealed against moisture
- Cast aluminum base with rigidly attached stainless steel column support rods for assured permanent alignment

SPACE ECONOMY
- Plug-in control units for Timing and Drop Counting require no added bench space
- Total required bench space 24" x 34" with 24" Turntables, 15" x 25" with 15" Turntables

Reco division of
RESEARCH SPECIALTIES CO.
2005 HOPKINS ST.
BERKELEY 7, CALIF.

Write for Bulletin 1205-A or contact your authorized RSCO Dealer

GLASS ABSORPTION CELLS made by KLETT

Makers of Complete Electrophoresis Apparatus

SCIENTIFIC APPARATUS

Klett Manufacturing Co.
179 East 87 Street, New York, New York

GLASS ABSORPTION CELLS

PRICES FROM $435.00
EQUIPMENT NEWS

The information reported here is obtained from manufacturers and from other sources considered to be reliable. Science does not assume responsibility for the accuracy of the information. All inquiries concerning items listed should be addressed to Science, Room 740, 11 W. 42 St., New York 36, N.Y. Include the name(s) of the manufacturer(s) and the department number(s).

- **SPECTROSCOPE**, for visual spectrochemical analysis, features a solution excitation chamber with an indexing assembly for easy alignment of electrodes. The electrodes can be replaced after cleaning without readjustment. Thirty-nine elements can be detected. (Fisher Scientific Co., Dept. S665)

- **MIRROR GALVANOMETER**, manufactured by Hilger and Watts Ltd., has sensitivity up to 2000 mm/µa. The scale image reflected from the galvanometer moves below a stationary index line. A darkened room is not required for reading. Anti-vibration support is provided within the instrument. (Jarrell-Ash Co., Dept. S654)

- **CAPACITANCE BRIDGE** covers the range of capacitance from 0 to 120 µf in seven ranges. Accuracy is better than 0.2 percent and within 0.01 µf in the lowest range. Dissipation factors from 0 to 1.05 at a frequency of 1 kcy/sec can be measured in three ranges. Excitation generators and detectors are included in the instrument. (Electro Measurements, Inc., Dept. S649)

- **AUTOMATIC FRACTION COLLECTOR** consists of an indexing mechanism, a turntable for holding the receiving tubes, and a volumetric siphon. Turntables are available for collection of up to 500 fractions in one run with fraction size ranging from 1 to 100 ml. Drop counting or constant time control are interchangeable. The drop-counting unit may be preset for counts up to 400. The constant timing unit is operative over a range from 18 sec to 120 min. (Research Specialties Co., Dept. S644)

- **PLASTIC TUBING**, reinforced with metal, will bend around a 5/16-in. diameter spindle without reduction of internal bore. Sizes range from 3/8 to 1 in. internal diameter. Working temperature ranges from 170° to -5°F and working pressure ranges from 100 to 200 lb/in.². The tubing is resistant to gasoline, oils, and sea water and is self-extinguishing. (Newage International Inc., Dept. S666)

- **DIFFERENTIAL TRANSFORMER** features less than 2-mv null voltage. Displacement range is ±0.2 in. Output is linear within 0.1 percent. Input is 6.3 v at 400 cy/sec. The transformer may be operated at any temperature to 400°F. Micrometer threads on the case permit precise positioning. (Automatic Timing and Controls Co., Inc., Dept. S655)

- **CYTOANALYZER** is designed to detect abnormal cells by microscopically scanning slides on which specimens from vaginal smears have been placed. The instrument is still in the experimental and testing stage. The scanner examines the pertinent area of the smear and converts optical signals into electrical signals that are fed to a computer. The computer applies certain rules to the signals, measures nuclear size and nuclear optical density of the cells, and distinguishes between normal and suspected cells. Scanning and simultaneous computation take less than 0.2 msec. (National Institutes of Health, National Cancer Institute, Dept. S661)

- **ULTRAVIOLET SPECTRUM SPECTROGRAPH** provides a two-coordinate photographic record of ultraviolet spectrum versus time. The spectral range is 3050 to 4350 A. Time resolution is variable, with a lower limit of 0.1 msec. Linear dispersion on the film is 45 A/mm, and spec-