Mobilization against Influenza

The high effectiveness of vaccination with formalin-inactivated influenza virus was demonstrated during the widespread epidemics of influenza A in 1943 and of influenza B in 1945, largely through the studies in military personnel conducted by the Commission on Influenza of the Armed Forces Epidemiological Board. In later years of low incidence the commission's repeated studies have provided confirmatory evidence that appropriately constituted vaccines are highly protective. It was established, however, with equal confidence that vaccine of the same composition was not effective in the 1947 epidemic caused by a virus variant which was termed "A-prime." Despite efforts to compound a vaccine which would contain components covering the range of antigenic variants, the Asian strains of 1957, isolated by Army laboratories in the Pacific, although belonging to type A, were promptly demonstrated by Hilleman, of the Walter Reed Army Institute of Research, to possess a dominant antigen different from those of recent years. The information was promptly transmitted to all agencies concerned with studies of influenza.

In historical perspective, one of the most striking features of the current epidemic of influenza is how typical it has been, to date, at least. Influenza is, however, a capricious disease, varying from mild and scattered flurries to the world-wide hurricane of 1918. Hence, recognition that an epidemic of influenza is launched on a global orbit always brings with it concern about its subsequent behavior. Because of its speed of travel, there may be little time to prepare.

In May there was a rapidly extending epidemic of high incidence and increased mortality in crowded areas of Asia, associated with a new variant of influenza virus. United States military units in those areas had also been affected. It was inevitable that the United States would be involved and, even though the disease was mild, high incidence could create serious functional dislocation. If severe, the nation's effectiveness might be seriously taxed.

The one proven method of protection against the oncoming wave was vaccination. Although biological manufacturers of influenza vaccine had had ten years of experience in producing relatively large amounts of varied formulae, getting a new strain into large-scale production requires time and major adjustments. If, as predicated, the disease was to become widely epidemic in the United States by early autumn, action was necessary. Virus was distributed immediately, then, to a number of research laboratories for study and appraisal of its unique characteristics and was also sent to the manufacturers for exploratory processing and preparation of experimental lots of vaccine. The world-wide network for influenza detection could follow the epidemic meanwhile for better documentation of its distribution and severity and for significant changes in its behavior.

Conferences of experts in influenza vaccine were called to consider potency requirements and time schedules. The Commission on Influenza, the Walter Reed Institute, and the Communicable Disease Center began
early in June actual studies of the potency of experimental lots of vaccine in human subjects. Information about the practicable potency of vaccine which could be produced in reasonable time and quantity was determined, and impetus to its production was given by purchase orders from the Armed Forces. The National Institutes of Health, in close collaboration with the manufacturers, took responsibility for assuring standard potency and safety of vaccine.

In the meantime, the Public Health Service exerted outstanding leadership toward mobilizing civilian health and medical resources for effective and efficient handling of a large epidemic. In this there was close collaboration with the American Medical Association, state and territorial health officers, the American Hospital Association, the military medical services, manufacturers of antibiotics, and other essential lay and professional groups. Among the questions which had to be considered were priorities in the use of limited supplies of vaccine and hospital beds, the conservation of the medical practitioners’ services, the care of the patient, the use of antibiotics, and the maintenance of community facilities and industrial production. In addition, funds were provided to support laboratories in the identification of epidemic prevalences, and further financial support was made available for desirable research upon problems presented by the epidemic.

Much attention has been given to providing current information on the status of the epidemic to the professions and to the public. The National Office of Vital Statistics provides weekly bulletins. Through the Communicable Disease Center a weekly Surveillance Report presents up-to-date details of spread, incidence, mortality, industrial absenteeism, and vaccine release. The preparation of this report is made possible by cooperation with the World Health Organization as well as with the numerous active agencies in this country. The Epidemic Surveillance Unit has sent its officers into epidemic areas for aid in investigations, and the Influenza Committee of the American Medical Association has taken steps to keep the profession informed as to urge effective community action.

A group from commissions of the Armed Forces Epidemiological Board conducted studies for a month in Chile during the winter season of August and September. The purpose was to learn in advance of its appearance in the United States more of the effect of the epidemic in an area usually exhibiting high mortality from respiratory disease. The observations of the group were important in that no unusual features were noted; pneumonic cases were seen to respond to treatment as in other years.

The Commission on Influenza has maintained in certain military establishments continued studies of vaccination against influenza. It was able to institute by the end of July carefully controlled investigations of the effectiveness of materials of different antigenic strength. In the early occurrence of epidemics at these posts, it has already demonstrated that the vaccine has a minimal effectiveness estimated to be from 45 percent (with early materials of low potency) to 75 percent (with later preparations of greater strength). Based on these and antigenic studies by various investigators, the decision was made to increase the potency from the earlier level to one that stimulates a response approximate to that of a person recovering from the disease.

It will be interesting to watch carefully the progress of this 1957 epidemic and the new information it will provide. It is already clear that the virus is not entirely new to our population but bears relationships to strains in circulation 30 or more years ago; so far this is reflected in the decreased incidence in older age groups. Speculators may place bets on two waves, three waves, or home permanents. But the evidence is against further marked change in severity of a virus which has already been passed so many times in susceptibles.

The entire development has been a remarkable demonstration of cooperation and coordination of research and application toward the meeting of an impending emergency. It could not have been possible earlier, or even now, were it not that major differences in scientific interests and theory have been amalgamated into a unified approach to an applied problem in national security.

THOMAS FRANCIS, JR.

School of Public Health, University of Michigan
Louis, Mo. (E. F. Swift, NWF, 232 Carroll St., NW, Washington 12.)

(R. H. Dott, AAPG, Box 979, Tulsa 1, Okla.)

20-22. Pulmonary Circulation Conf., Chicago, Ill. (Wright Adams, Chicago Heart Assoc., 69 W. Washington St., Chicago 2.)
20-23. International Assoc. for Dental Research, annual, Detroit, Mich. (D. Y. Burrill, Univ. of Louisville, School of Dentistry, 129 E. Broadway, Louisville 2, Ky.)
23-26. American Assoc. of Dental Schools, annual, Detroit, Mich. (M. W. Moreau, 42 S. Greene St., Baltimore 1, Md.)
29. South Carolina Acad. of Science, annual, Charleston. (Miss M. Hes, Dept. of Biology, Winthrop College, Clemson, S.C.)
30-3. American College Personnel Assoc., annual, St. Louis, Mo. (L. Rigs, DePauw Univ., Greencastle, Ind.)
April
2-4. American Assoc. of Anatomists, annual, Buffalo, N.Y. (L. B. Flexner, Dept. of Anatomy, School of Medicine, Univ. of Pennsylvania, Philadelphia 4.)
2-4. Instruments and Regulators Conf., Newark, Del. (W. E. Vannah, Control Engineering, 330 W. 42 St., New York 36.)
4-5. Southern Soc. for Philosophy and Psychology, annual, Nashville, Tenn. (W. B. Webb, U.S. Naval School of Aviation Medicine, Pensacola, Fla.)
7-11. American Assoc. of Cereal Chemists, annual, Cincinnati, Ohio. (J. W. Pence, Western Utilization Research Laboratories, Albany, Calif.)
8-10. Electronic Waveguides Symp., New York. (J. Fox, Microwave Research Inst., Polytechnic Inst. of Brooklyn, 55 Johnson St., Brooklyn 1, N.Y.)
9-12. National Council of Teachers of Mathematics, Cleveland, Ohio. (M. H. Ahrendt, NCTM, 1201 16 St., NW, Washington 6.)
10-11. American Inst. of Chemists, annual, Los Angeles, Calif. (L. Van Doren, AIC, 60 E. 42 St., New York 17.)
10-12. National Speleological Soc., annual, Gatlinburg, Tenn. (G. W. Moore, Geology Dept., Yale Univ, New Haven, Conn.)
10-12. Ohio Acad. of Science, annual, Akron, Ohio. (G. W. Burns, Dept. of
A COMPLETELY REDESIGNED

ELECTRO-DESALTER

In the chromatography of many organic compounds, the presence of inorganic salts causes a characteristic "streaking" and sometimes prevents entirely the separation of components. The RSCo Electro-Desalter Model A-1930 provides a rapid means of removing these undesirable ions.

WRITE FOR
BULLETIN NO. 1930-A
OR CONTACT YOUR AUTHORIZED RSCO DEALER

RSCo division of
RESEARCH SPECIALTIES CO.
2005 HOPKINS ST.
BERKELEY 7, CALIF.

DIFCO

... *the only complete line of microbiological reagents and media*

- Culture Media
- Microbiological Assay Media
- Tissue Culture and Virus Media
- Serological Reagents Antisera
- Diagnostic Reagents
- Sensitivity Disks Unidisks
- Peptones Hydrolysates Amino Acids
- Enzymes Enrichments Dyes Indicators
- Carbohydrates Biochemicals

- 60 years' experience
in the preparation of Difco products assures
UNIFORMITY STABILITY ECONOMY

- Complete Stocks Fast Service 24-hour Shipment
- Difco Manual and other descriptive
literature available on request

DIFCO LABORATORIES
DETOIT 1, MICHIGAN
THE RICKETTSIAL DISEASES OF MAN

- This symposium volume is a comprehensive survey of the general field of Rickettsial diseases in man. Among the contributors appear the names of many of the foremost American authorities in this important and relatively new field of medicine.

- The first group of papers includes discussions of the taxonomy, biology, isolation, and identification of vectors, and reservoirs of infection of the Rickettsial diseases of man. The second group of papers is devoted to discussions of serological reactions, the Weil-Felix reaction, the complement-fixation and agglutination reactions, and the preparation and standardization of Rickettsial vaccines. The final group of papers treats of insecticides, methods of their application, and mite control.

To: AAAS Publications
1515 Mass. Ave., N.W., Washington 5, D. C.

Please accept my order for one copy of The Rickettsial Diseases of Man (7½ x 10½, cloth-bound). My check in correct payment is enclosed ($5.25 to A.A.S. members, $6.25 to those who are not members; including postage.)

Name
Address
City Zone State

EQUIPMENT NEWS

The information reported here is obtained from manufacturers and from other sources considered to be reliable. Science does not assume responsibility for the accuracy of the information. All inquiries concerning items listed should be addressed to Science, Room 740, 11 W. 42 St., New York 36, N.Y. Include the name(s) of the manufacturer(s) and the department number(s).

- **PHASE-ANGLE VOLTOMETER** provides 10-μV sensitivity as a phase-sensitive null indicator, with less than 5 μV of noise. Harmonic rejection exceeds 55 db. Full-scale voltage ranges of from 1 mv to 300 v are available for measuring signal magnitude and the quadrature or in-phase components of a signal. (North Atlantic Industries, Inc., Dept. 5794)

- **MILLIVOLTMETER** features zero-center indication. Input impedance is 2 meg-ohm. Nine ranges up to 10 v d-c full scale are selectable. Zero stability is said to eliminate the need for zeroing control. (Industrial Control Co., Dept. S806)

- **pH MEASURING UNIT** used in conjunction with a vibrating-capacitor electrometer unit, deflects full scale 0.1 pH at any point in the range from pH 3 to pH 10. Measurements are said to be accurate to ±0.002 pH units and the zero
Advances in CLINICAL CHEMISTRY
Edited by Harry Sobotka, Mount Sinai Hospital, New York, New York
and C. P. Stewart, University of Edinburgh, Scotland
Volume 1. Ready Summer 1958
Contributions by A. L. Chaney, C. E. Dalgliesh, Jan Ek, B. Josephson, R. Neher, J. A. Owen,
H. Peeters, W. N. M. Ramsay, J. G. Reinhold, S. Silver, and F. Wroblewski

MODERN MATERIALS
Advances in Developments and Applications
Edited by Henry H. Hausner, Penn-Texas Corporation, New York, New York
Volume 1, 1958. In preparation
Contributions by F. A. Bovey, T. D. Callinan, W. A. DelMar, J. R. Hensler, J. H. Koenig, N. J. Kreidl,

Advances in INORGANIC CHEMISTRY and RADIOCHEMISTRY
Edited by H. J. Emeléus and Alan G. Sharpe,
University Chemical Laboratory, Cambridge, England
Volume 1, 1958. In preparation
Special leaflets available upon request

ACADEMIC PRESS INC., Publishers
111 Fifth Avenue, New York 3, New York

KLETT ELECTROPHORESIS
CUSTOM MADE

TOOL FOR THE ANALYSIS
OF COMPLEX COLLOID SYSTEMS, AND FOR
THE CONTROL OF PRODUCTION OF
PURIFIED PROTEINS, ENZYMES, HORMONES

KLETT MANUFACTURING CO.
179 EAST 87TH STREET
NEW YORK, N. Y.
point is said to be stable to the same figure in 12 hours. The units which make up the complete instrument are interconnected by flexible leads. (Robertshaw-Fulton Controls Company, Dept. S801)

- **Sound spectrograph** makes a permanent aural record in addition to three visual analyses of vibrations in the 85- to 12,000-cy/sec range. The instrument can be adapted to subsonic vibrations. The record medium is a flexible magnetic disk 12 in. in diameter. The three visual records relate frequency and intensity to time; intensity, over a wider dynamic range, to frequency at a selected time; and amplitude of an over-all sample to time. Frequency response is constant within ±2 db. Bandwidths are 45 and 300 cy/sec. Recording time is 2.4 sec. (Kay Electric Co., Dept. S805)

- **Folder** produces accordion folds in a long strip or roll of paper, such as the chart from an oscillograph or pen-and-ink recorder. A five- to tenfold increase in speed over the speed of manual folding is claimed. (Benson-Lehner Corp., Dept. S812)

- **Variable-area flow meter** is an all-glass instrument designed for research applications. Flow is sensed by a super-

fine-finished float which rises or falls in a precision-bore glass tube to expose more or less of a V-shaped orifice cut in the wall of the tube. Standard flow-tube sizes are ½ in. and ¾ in., with ranges from 0.05 to 0.50 lit./min to 1.35 to 13.0 lit./min. Maximum operating pressure is 80 lb/in.² at 70°F; maximum operating temperature is 150°F. Other ranges can be furnished. (C-Mar Corporation, Dept. S810)

- **Phase shifter** consists of resistance-capacitance networks, a phase inverter, and an output cathode follower. Phase-angle lag between input and output is shown on front-panel dials for 400 cy/sec operation. Range is 0 to 360 deg. Maximum error at 400 cy/sec is less than 0.1 deg. Maximum input signal is 25 v r.m.s. A correction curve permits use of the instrument at frequencies other than nominal. (Advance Electronics Lab., Inc., Dept. S808)

- **Electrophoresis apparatus** features a chamber with built-in interlocks to prevent electrical shocks. The power supply will accommodate four chambers. Voltage is variable up to 500 v, current up to 50 ma. Each migration chamber will hold 20 ½-in. strips or 12 1-in. strips. (Labline, Inc., Dept. S813)

- **Direct-reading spectrographic analyzer** scans the spectrum of the specimen to be analyzed, stopping at selected lines according to a prearranged program. In this way only two multiplier phototubes are required, and continuous observation of instantaneous values of intensity ratio is permitted. A typical analysis of a metal alloy for six elements requires 57 sec. Dispersion is accomplished by a quartz prism system. In operation, outputs of the phototubes are fed to identical amplifiers and thence to an indicating milliammeter and a chart recorder. Signal amplification is based on spark modulation, thus permitting use of a-c amplification. (Intercontinental Electronics Corp., Dept. S820)

- **Laboratory furnace**, for temperatures to 1760°C, operates on any available fuel gas. Working temperature is reached in 1 hr and is held with fuel consumption of 160,000 Btu/hr. Charge space is 4½ in. in diameter and 2¾ in. long. By removal of a single element, the furnace may be converted into a lower-temperature unit with a larger charge space. (Selas Corp. of America, Dept. S816)

- **Crystal-controlled oscillators** are transistorized for compactness. Seated length is 5½ in. and diameter is 1½ in. Output is 600 µw in the frequency range from 4 to 250 kcy/sec. Stability is ±0.015 percent from −40° to +60°C. Shock of 100 g and vibration of 0.03 in. total excursion at 5 to 55 cy/sec are tolerated. (Dynamics Corp. of America, Dept. S817)

- **Speed-deviation recorder** indicates and records percentage deviation from a predetermined but adjustable speed. Input is received from a d-c tachometer generator and is compared with a stable d-c reference voltage. Accuracy is 0.1 percent. A variety of ranges is available; minimum span is 2 percent. (General Electric, Dept. S811)

- **Magazine processor** attaches to standard oscillographs and provides developed and dried photographic records as fast as the instrument produces data. Development rates up to 150 in./min are reached. Magazine capacity is 400 ft of 12-in. paper. Dimensions are 15½ by 13 by 11½ in. (Consolidated Electrodynamics Corp., Dept. S815)

- **Microprojector** includes a horizontal stage, an inclined screen on which the enlarged image is viewed, and a choice of fixed magnifications from 10 to 100, selectable by interchange of lenses. The unit is self-contained on a rigid floor base. The stage opening is 4-in. in diameter, and the screen is 14-in. in diameter. (George Scherr Co., Dept. S819)

Joshua Stern

National Bureau of Standards