SCIENCE

28 March 1958, Volume 127, Number 3300

Meeting of Minds

A convenient property of the five problems discussed by the recent AAAS-sponsored Parliament of Science is that they all admit of much the same answer. In each case something about science needs to be increased or improved or both—its support, its organization, its communication, its students, its teachers. But this is just to recognize the present need to help science help the nation. A balancing of other considerations comes into play in deciding upon the best means to achieve these ends. And so on 15, 16, and 17 March the parliament was held. And accordingly, it proved to be a lively, if sometimes frustrating, gathering.

The question of means most hotly debated was that of defining the proper place of the Federal Government in research and education. Some participants urged increased federal aid. Others argued that responsibilities in this area belong to the state and local governments and to private agencies. But whatever position members took on this and similar matters, all were at pains to distinguish between questions of policy and questions of fact and between their roles as citizens and their roles as scientists.

To arrive at a set of recommendations, the parliament, which numbered something like 100 members, split up into five working subgroups, one for each of the problems tackled. The subgroups then reported back to the collected assembly with sets of proposals, which were discussed and put to vote. Although the parliament constituted a distinguished and representative body of scientists and thinkers, it did not claim to speak for any group other than itself. In fact, it spoke only for its own majority, for the rules of the meeting did not insist upon unanimous agreement. Among the final recommendations was one opposing the creation in the Government of a separate Department of Science and another endorsing the coordinating function of the National Science Foundation. The official report of the parliament is now in preparation and will appear in a subsequent issue of Science.

As a first effort at this kind of operation, the parliament experienced several difficulties. One difficulty arose from the large size of the working groups and the shortness of time. The result was that, in the interests of agreement, important details of how much, of where, and of when had to be left unspecified. Another difficulty arose from the parliament's attempt to address a very broad audience. The result was that considerable effort was devoted to saying a lot of things that most of its members would ordinarily have taken for granted. The fear was that if the parliament came out in favor of A, without mentioning B, in which it was also in favor, then some people might interpret the omission of B as the rejection of B.

How effective was the parliament in helping science help the nation? Certainly, it gave the participants an opportunity to benefit from each other's knowledge and experience. And certainly, it served as a demonstration that the scientific community, and in particular the AAAS, is much concerned about the problems of fostering and utilizing science. But any full evaluation of the impact of the parliament will have to await future developments. We shall have to see whether any of its more specific recommendations find their way into public policy, and, if so, how they work out.—J. T.
Versatile B&L Research Microscopes keep pace with your progress

You never outgrow your B&L Dynoptic Research Microscope. It grows with you. Whether for routine work or advanced research, it accommodates the most complete range of accessories (all readily available) for visual microscopy, U-V and photomicrography.

And what a pleasure to use! Dynoptic frictionless operation saves effort, saves time... assures critically focused, vivid images. Controls are positioned low for comfortable manipulation with hand at rest on table. You remain relaxed, at ease, for your best work.

Find out more about your lifetime companion in scientific achievement. Mail the coupon today.

BAUSCH & LOMB OPTICAL CO.
75927 St. Paul St., Rochester 2, N.Y.

☐ Please send me B&L Dynoptic Research Microscope Catalog D-1057
☐ Schedule a demonstration at my convenience

NAME
TITLE
ADDRESS
CITY....... ZONE.... STATE....

BAUSCH & LOMB
THE NEW

MEDICAL & LABORATORY

MICROSCOPE sm

Leitz sets a new standard in introducing this general purpose microscope for student and laboratory use. The SM model embodies the advances of design and craftsmanship that only 100 years of microscope experience can provide. It combines solid construction and operational ease with true accuracy and precision. The Leitz MEDICAL & LABORATORY MICROSCOPE SM is the ideal microscope for the laboratory. Among its outstanding features are:

- Famous Leitz ball-bearing, single knob, dual focusing control, combines fine and coarse focusing
- Handsome design, solid and dependable construction
- Flat-surfaced stand of corrosion-resistant light alloy
- May be used turned away from observer for easy accessibility to slide
- Instant-locking device changes tubes (inclined or straight monocular or binocular) in a one-step operation
- Variety of object stages to choose from
- Removable mirror interchanges with attachable illuminators
- Retractable spring-loaded mounts on high-powered objectives provide positive protection against damage to slide or front lens.

E. Leitz, Inc., Dept. SC-3
468 Fourth Avenue, New York 16, N.Y.
Please send me additional information on the SM Microscope

NAME

STREET

CITY ZONE STATE

E. LEITZ, INC., 468 FOURTH AVENUE, NEW YORK 16, N.Y.
Distributors of the world-famous products of Ernst Leitz G.m.b.H., Wetzlar, Germany—Ernst Leitz Canada Ltd.
LEICA CAMERAS • LENSES • MICROSCOPES • BINOCULARS
Letters

Plan for Producing Significant Research

The appearance of man-made moons, shot up from the U.S.S.R., dramatically highlights the problem of the development of new knowledge in the United States. The situation can be summed up with the statement that the professional, as a rule, beats the amateur. In the modern sense, we have neither positions nor institutions whose primary task is to develop new knowledge. Thus, we have no professional science. We have a fairly good training program for developing scientists, but, after they have been trained, we have no positions for them as creative scientists. They are either employed by industry to develop commercial products or in medical institutions to find a cure for some disease, or they may obtain a teaching position at some university. In all these places creative research occupies a secondary role. The net return of fundamental knowledge compared to the talent invested is insignificant.

Until recently, this method worked, but the development of the professional scientist in the Soviet Union, placed in institutions whose primary object is to develop new knowledge, renders our present method as obsolete as was the bow and arrow when gunpowder was invented and applied to warfare.

Historically, there has been one example of a professional science organization in the United States, established by private funds. In 1902 the Rockefeller Institute for Medical Research was organized for the development of new knowledge. In the next few years, about twelve key men were employed to search for new knowledge in the medical area. Each one of these men had an appropriate number of associates, assistants, and technical services; the administration's role was to create psychological and physical conditions which would stimulate the development of new knowledge. The salaries paid these men were ample to provide a high standard of living. The accomplishments of these few men, during 25 years of operation under this system, changed medical history throughout the world. To cite a few examples: D. D. van Slyke, practically single-handed, created the science of clinical chemistry which is now an integral part of medicine and has saved innumerable lives. Karl Landsteiner established the knowledge of blood-groups and immunochemistry. This laid the foundation for blood transfusions and a better understanding of vaccination. The indications are that this fundamental work will continue to serve as a reservoir for other practical applications. Alexis Carrel contributed significantly to the field of tissue culture, from which an untold number of discoveries were derived; the Salk vaccine is based on this knowledge. P. A. Levene, a giant intellect, elucidated the structure of nucleic acid, which is the basic unit of heredity and viruses and which is involved in the synthesis of proteins. J. Loeb laid a better foundation for the understanding of proteins, which are the key materials of life.

Later, this program became diluted by a departure from the original principles, resulting in a lowered production of basic knowledge, and thus this scientific institution, although still outstanding, no longer serves as an example of an ideal professional scientific organization. This example serves to illustrate, however, that science on a professional basis in a free society will be highly creative.

The proposal which I have in mind is to establish productive scientific study organized around a relatively small number of unusually gifted investigators—about a hundred of them in each of ten new institutions covering various branches of knowledge. Each one of these scientists should have an appropriate number of assistants and, in addition, should have
GLASS ABSORPTION
CELLS
made by KLETT

Klett Manufacturing Co.
179 East 87 Street, New York, New York

WISHING... for one dependable source for research biochemicals?

Let NUTRITIONAL BIOCHEMICALS CORPORATION be the one answer to all your problems of quality, service, and economy in the biochemical field.

- OVER 225 AMINO ACIDS
- OVER 90 PEPTIDES
- MISCELLANEOUS BIOCHEMICALS
- VITAMINS
- ENZYMES
- GROWTH FACTORS
- OVER 200 NUCLEOPROTEINS, PURINES, PYRIMIDINES
- STEROID HORMONES
- BIOLOGICAL SALT MIXTURES
- BIOLOGICAL TEST MATERIALS

NUTRITIONAL
BIOCHEMICALS
CORPORATION
21010 Miles Avenue . . . Cleveland 28, Ohio

IF YOU WORK WITH
HIGH VACUUM

AVOID... FUSSING TIME
... TINKERING TIME
... POOR PERFORMANCE
... OPERATING DIFFICULTIES

Satisfactory design and profitable operation of high vacuum equipment require specialized knowledge and components. Even if you’re already a vacuum expert, you can avoid lengthy study, tedious calculations, and costly pitfalls by asking for the assistance of NRC vacuum specialists. That’s the quick, sure, no-cost way to assure that you benefit from the lessons learned in thousands of vacuum installations.

NRC Equipment Corporation is your one convenient source for service-proved components, equipment, and systems especially designed for high vacuum service, PLUS technical help in selecting the items which will best suit your own needs.

Write us today.

NRC EQUIPMENT CORPORATION
A Subsidiary of National Research Corporation
Dept. 25-R, CHARLEMONT ST., NEWTON, MASS.

SCIENCE
28 MARCH 1958

BIND ’EM...
and you’ll find them!

Keep your copies of SCIENCE always available for quick, easy reference in this attractive, practical binder. Simply snap the magazine in or out in a few seconds—no punching or mutilating. It opens FLAT— for easy reference and readability. Studily constructed—holds 26 issues.

This beautiful maroon buckram binder stamped in gold leaf will make a fine addition to your library. Only $3.25 postpaid; add 50¢ for orders outside U.S.A. (Personal check or money order, please.) Name of owner, 75¢ extra; year of issue, 50¢ extra.

• 1515 Massachusetts Ave., NW, Washington 5, D.C.
I agree with Heller and Gournay that the "erection of artificial barriers between research groups cannot but hinder the progress of all." Indeed, this fact is finally being realized even by many non-scientific individuals and is presently the subject of much discussion. However, Heller and Gournay could not have picked a more inappropriate example of the lack of communication between research workers. I have frequently met with all of the people mentioned in the letter and am quite well informed on the nature of their work and results, as they are with my efforts. Furthermore, the value and limitations of both methods of scanning (flying-spot and television-camera tube) are recognized by most of the research workers in this field. In fact, it was recently (22 November) the subject of an excellent symposium and panel discussion on ultraviolet scanning microscopy sponsored by the Philadelphia chapter of the Professional Group on Medical Electronics of the Institute of Radio Engineers.

Both articles published in the instrument issue of Science describe instruments designed for a specific purpose. Although the applications of the techniques described are broad in each case, it was not the intention to publish a general discussion of the field of scanning instrumentation.

Perhaps as further evidence that the respective workers are intimately aware of each others' efforts and contributions it should be mentioned that the automatic bacterial colony counter was developed by Carl Berkley, Y. Yamagami, and H. Mansberg. An article by these authors, describing in detail the circuit techniques, will be published soon (Electronics, in press). One of these authors, Carl Berkley, is now associated with Zworykin and Hatke and is participating in the color-translating microscope program.

Perhaps one reason that Heller and Gournay are not aware of the degree of interchange of ideas in this field is the fact that so many of the investigators are concerned with medical-electronic applications. I believe that these scanning techniques will find increasing use in industrial research applications, and I look forward to seeing more publication of such efforts [see "Flying spot techniques and application," Du Mont Instr. J. (Nov. 1957)].

Finally, I would assure them that no "legal points or competitive business practices" were involved either in the design of these instruments or in the preparation of the articles.

H. P. Mansberg
Allen B. Du Mont Laboratories, Inc.,
Clifton, New Jersey

THE SPECIES PROBLEM

The symposium was arranged by the Association of Southeastern Biologists and cosponsored by AAAS Sections F and G, as well as four other societies. Most papers are published essentially as given in Atlanta in December 1955. Dr. T. M. Sonneborn, however, undertook a comprehensive survey of the species problem in the protozoans and particularly in the ciliates. His masteryly synthesis comprising more than two-fifths of the volume is a fundamental contribution to the protozoan literature.

This symposium made a solid contribution toward the solution of the species problem. It broadened the base on which to discuss the problem by utilizing new organisms. It led to a clarification of the areas of general agreement among biologists. It presented a clear statement of the various species concepts and frankly stated and enumerated difficulties in their application to different types of natural populations. Finally, it illuminated certain aspects of the agelass species problem that had been neglected previously, and it attempted a statement of still controversial issues. From these papers it should be evident that the species problem is still one of the important issues in biology.

THE SPECIES PROBLEM

AAAS SYMPOSIUM VOLUME NO. 50
Edited by Ernst Mayr, Harvard University
6 x 9 in., 404 pp., references, index, clothbound, October 1957
Price $8.75; special cash order price for AAAS members $7.50

CONTENTS

Species Concepts and Definitions
Ernst Mayr, Harvard University

The Species as a Field for Gene Recombination
Hampton L. Carson, Washington University

The Plant Species in Theory and Practice
Verne Grant, Rancho Santa Ana Botanic Garden and Claremont Graduate School

The Species Problem in Freshwater Animals
John Langdon Brooks, Yale University

The Species Problem with Fossil Animals
John Imbrie, Columbia University

Breeding Systems, Reproductive Methods, and Species Problems in Protozoa
T. M. Sonneborn, Indiana University

An Embryologist's View of the Species Concept
John A. Moore, Barnard College and Columbia University

The Species Problem from the Viewpoint of a Physiologist
C. Ladd Prosser, University of Illinois

Difficulties and Importance of Biological Species
Ernst Mayr, Harvard University

Index
Meetings

Palaeontological Research

The Palaeontological Research Institution, a recent affiliate of the AAAS, was founded in 1932 by the late Gilbert D. Harris of Cornell University, at Ithaca, New York. A provisional charter was granted in 1933 by the University of the State of New York; the absolute charter, in 1936.

Since its founding in 1932, the institution has made and conducted scientific explorations, researches, investigations, and experiments. In addition to its library of books and journals, it has collected and preserved scientific data, reports, graphs, maps, and documents, making all information at its disposal available by publication, exhibits, lectures, and other means. The institution has held in trust and dispersed certain funds provided for research and scholarships and, in general, has acted so as to stimulate interest and to increase and disseminate scientific knowledge, with particular reference to palaeontology.

The organization publishes *Bulletins of American Palaeontology* (octavo), now in its 38th volume, and *Palaeographica Americana* (quarto), in its 4th volume, as well as special publications. The *Bulletins* average about a volume a year on any one phase of palaeontology, although special attention has been given to the palaeontology and stratigraphy of the Cenozoic of southern United States, South America, and the Caribbean area. *Palaeographica Americana* consists of detailed descriptive and illustrated monographs of particular groups. Emphasis is placed on well- and fully illustrated papers.

Membership in the institution is obtained by election. At present about one-fourth of the members are from countries other than the United States. Scientists from Canada; from Brazil, Colombia, and Venezuela; from Cuba, Jamaica, Trinidad, and the Dominican Republic; from Czechoslovakia, France, Germany, Norway, Sweden; and from Australia, North Africa, South Africa, and Saudi Arabia are included.

The society maintains headquarters at 109 Dearborn Place, Ithaca, New York. The headquarters building houses between 10,500 and 11,000 type and figured specimens. The publication of a catalog of this material is in progress.

Among its large duplicate collections of invertebrate fossils and the Cenozoic material gathered by G. D. Harris and his students, from South America, the Caribbean, and the United States; the R. H. and D. K. Palmer collections from the West Coast of the United States and from Cuba (*Bull. Am. Palaeontol. 1*, No. 128 locality list); foraminiferal material gathered by H. J. Plummer; Atlantic Refining Company core samples from Haiti and the Dominican Republic; and extensive collections of recent Mollusca.

This is also the headquarters for the publications of the Cushman Foundation for Foraminiferal Research and for those of the late Joseph A. Cushman and the Cushman Laboratory for Foraminiferal Research. Research is carried on at the institution headquarters and by the members at large, under the auspices of the organization.

Meetings of members and trustees of the institution are held at its headquarters the first Saturday of April and October. Election of members is held at that time. New officers are elected at the annual meeting in October. The business meeting is followed by an informal talk and social gathering. A scheduled evening lecture, open to the public, is given by an authoritative speaker on some subject related to geology.

KATHERINE V. W. PALMER

Palaeontological Research Institution, Ithaca, New York

Chemical Society's National Meeting

Richard Wistar, head of the Mills College department of physical sciences, is general chairman of the 133rd national meeting of the American Chemical Society, which will be held in San Francisco 13–18 April. Five thousand chemists and chemical engineers from all parts of the United States and several foreign countries will take part in sessions sponsored by 21 scientific and technical divisions of the society.

Chemical advances against disease, recent progress in nuclear energy, and new developments in science education are among the subjects of some 1500 reports to be presented at the meeting. Chemical contributions in many other fields, such as food processing, nutrition, agriculture, fuel, plastics, textiles, and sanitation, also will be described at more than 200 half-day sessions during the week.

Glenn T. Seaborg, Nobel Prize-winning chemist of the University of California, is among the many distinguished scientists on the program. Seaborg, who is professor of chemistry and head of the university's radiation laboratory, will be chairman of a symposium on "The New Elements" sponsored by the society's Division of Chemical Education.

Electronic Waveguides

Internationally known specialists in electronic waveguides will participate in the eighth of a series of international symposia presented by the Microwave Research Institute of the Polytechnic Institute of Brooklyn on 8, 9, and 10 April in the auditorium of the Engineer-
ONLY

Mann Assayed

BIOCHEMICALS

EVEY PRODUCT ANALYZED

EVERY ANALYSIS ON THE LABEL

P-AMINOENZYMOL-L-GLUTAMIC ACID
Mann Assayed
Sp.Rot.-16.4° (c=2 in 0.1N HCl)
C: 54.3%
H: 8.69%
N: 10.64%
Chromatographically Pure

WRITE FOR REFERENCE GUIDE AND PRICE LIST 123 CONTAINING COMPLETE SPECIFICATIONS OF EACH PRODUCT.

PEPTIDES • FATTY ACIDS • ENZYMES • COENZYMES
ANTI-METABOLITES • PYRIDINES • AMINO ACIDS
CARBOHYDRATES • HORMONES • NUCLEO PROTEINS
VITAMINS • PURINES • HORMONE INTERMEDIATES
PLANT GROWTH HORMONES • MISC. BIOCHEMICALS

THE NEW, EFFICIENT

Electric

Desalter

Rapidly removes the inorganic salts that cause streaking in chromatography and electrophoresis.

Write for Bulletin 1930A or call your Authorized RSCo Dealer

PHOTOVOLT Line-Operated Multiplier FLUORESCENCE METER

Mod. 540

- High-sensitivity for measurement of low concentrations (full-scale setting for 0.001 microgram quinine sulphate)
- Micro-fluorimetry with liquid volumes as low as 1 ml
- Low blank readings, strict linearity of instrument response
- Universally applicable due to great variety of available filters, sample holders, adapters and other accessories
- Interference filters for high specificity of results and for determining spectral distribution of the fluorescent light
- High-sensitivity nephelometry for low degrees of turbidities
- Fluorescence evaluation of powders, pastes, slurries, and solids, also for spot-tests on filter paper without elution

Write for Bulletin #392 to

PHOTOVOLT CORP.

95 Madison Ave.
New York 16, N. Y.

SERVO-GRAPHIC STRIP CHART RECORDER

Solves your recording problem in the 10 to 100 Millivolt DC range at the Lowest Cost

The principle of operation is based on a null balancing system using a multi-turn potentiometer and servo-motor. The simple basic design and rugged construction provides utmost reliability. Features: long life photo-electric chopper, rectilinear recording, variety of chart speeds and drives, mounts and writes horizontal or vertical, all components readily accessible.

C. H. STOEITING CO.

424 N. HOMAN AVE. • CHICAGO 24, ILL.

28 MARCH 1958

713
Forthcoming Events

April

19–25. Industrial Health Conf., Atlantic City, N.J. (IHC, Room 1313, 28 E. Jackson Blvd., Chicago 4, Ill.)

20–22. American Assoc. of Colleges of Pharmacy, annual, Los Angeles, Calif. (G. L. Webster, College of Pharmacy, Univ. of Illinois, 808 S. Wood St., Chicago, 12.)

20–23. Chemical Engineering Conf., Canada-United States, Montreal, Quebec, (H. R. L. Streight, DuPont Company of Canada, P.O. Box 660, Montreal.)

21–23. American Oil Chemists’ Soc., Memphis, Tenn. (Mrs. L. R. Hawkins, AOCS, 35 E. Wacker Dr., Chicago 1, Ill.)

24–25. Nutrition Conf., 4th annual, Detroit, Mich. (J. M. Orten, Dept. of Physiological Chemistry, Wayne State Univ., College of Medicine, 1401 Rivard St., Detroit 7.)

24–26. Wildflower Pilgrimage, 8th annual, Gatlinburg, Tenn. (A. J. Sharpe, Dept. of Botany, Univ. of Tennessee, Knoxville.)

(See issue of 21 March for comprehensive list)
Equipment

The information reported here is obtained from manufacturers and from other sources considered to be reliable. Science does not assume responsibility for the accuracy of the information. A coupon for use in making inquiries concerning the items listed appears on page 718.

Angular-acceleration generator may be continuously adjusted within its range by exchanging or adjusting the position of weights and by varying the winding of the torsion bar that powers the generator. Widely different ranges may be attained by replacing the torsion bar. Acceleration range is thus 0.5 to 200 rad/sec². Motion generated is picked up by a potentiometer of 9000-ohm resistance. (Humphrey Inc., Dept. 9958)

Digital voltmeter compares the input voltage to be measured with an internally generated linear sawtooth voltage wave. When voltage coincidence occurs between the input and the generated reference, a pulse is generated. The time interval between the initiation of the sawtooth reference and the occurrence of this pulse is proportional to the input voltage. The time interval is measured and displayed by an oscillator-counter combination. Accuracy of a four-digit model is ± 0.01 percent with encoding rate of 98/sec. Range of 0.1 to 1000 v can be extended to 1 mv by use of external amplifiers. (Servonic, Inc., Dept. 9961)

Roller micrometer sorts objects by allowing them to fall between the spaced rollers into a series of bins. Spacing of the two rollers varies from one end to the other so that the objects being sorted fall through the space at a location determined by their size. For example, with spacing differing by 0.001 in. from one end to the other, sorting by groups of 0.00005 in. can be achieved with good consistency. Fragile objects can be handled. (Affiliated Manufacturers Inc., Dept. 9963)

Pressure transducer is water-cooled to operate at temperatures of 5000°F or higher. The device combines a diaphragm and a tubular strain gage. Frequency response is constant to 10,000 cy/sec. Accuracy is ± 1 percent of full scale, which may be 1000 or 2000 lb/in². (Norwood Controls Division of American Standard, Dept. 9965)

Magnetostrictive storage unit permits access time of 3 nsec. The unit consists of eleven 120-4sec delay lines, ten of which store a total of 600 bits at 1 Mcy/sec pulse repetition frequency. The eleventh line provides synchronization...