How Big Is Too Big?

As the national volume of research increases, and, indeed, as we experience a mounting rate of increase, a number of research organizations are growing, or may already have grown, to such dimensions that one is bound to inquire: How big is too big?

There is of course no tidy or universal answer. But there may nevertheless be some criteria which should be in the minds of those who face this question.

An organization is clearly too big if an excess of enthusiasm, energy, and hope has resulted in an expansion whose financing is so shaky that it imperils morale, or whose physical facilities are so crowded that research efficiency has suffered.

An organization should not grow further if it can do so only by using the perhaps illusory attraction of its size, resources, and prestige to rob other organizations of personnel which might, in terms of the total national effort, better stay where they are. In addition, the financial support necessary for the further expansion of a large institution may, under some circumstances, be obtained only at the expense of funds which should in fact go to other institutions.

Any enlargement of an organization is achieved only at a cost—of money, of facilities, and of personnel, all of which might otherwise be utilized elsewhere in other tasks. On the other hand, an organizational enlargement is presumably always designed to produce new benefits. Only when these benefits clearly promise to outweigh the total cost, as judged unsatisfactorily and broadly, is the expansion justified. No one can draw up a precise profit-and-loss statement for such a transaction, but he can at least attempt to weigh all the factors.

As growth occurs it is inevitable that there will be increasing complications of organization, increasing difficulties of internal communication, and increasing inefficiency in the direct and detailed contact between the upper levels of leadership and the active research at the laboratory bench. An organization has already outgrown its optimum size if these unfortunate results of growth have combined to bring it about that the whole is no longer more than the mere sum of the parts.

There are doubtless further important criteria for judging overgrowth of an organization. It is thus to be hoped that others will add to the discussion of this topic.—Warren Weaver, Rockefeller Foundation, New York.
Bausch & Lomb Micro-Projectors Give You
MORE TEACHING TIME PER CLASS HOUR

Vivid screen-sized views of micro-specimens speed group instruction

For science instruction . . . clearest views, easiest to use
Fills screen with sharply magnified images of fixed or live specimens. Also projects directly onto tracing pad. Magnification range from 75X to 1500X at 10 feet.

MAIL COUPON FOR DATA AND DEMONSTRATION

BAUSCH & LOMB OPTICAL CO.
75931 St. Paul St., Rochester 2, N. Y.
☐ I'd like Tri-Simplex Folder E248 . . . ☐ and demonstration.
☐ I'd like SpeedMatic Folder E246 . . . ☐ and demonstration.

NAME .. TITLE
SCHOOL OR COMPANY ..

CITY .. ZONE STATE

BAUSCH & LOMB

SCIENCE, VOL. 128
20–27. Genetics, 10th intern. cong., Montreal, Canada. (J. W. Boyes, Dept. of Genetics, McGill Univ., Montreal.)

21–23. American Farm Economic Assoc., Winnipeg, Canada. (L. S. Hardin, Dept. of Agricultural Economics, Purdue Univ., Lafayette, Ind.)

21–23. Chemical Organization of Cells, Normal and Abnormal, Madison, Wis. (J. F. A. McManus, Dept. of Pathology, Univ. of Alabama Medical Center, Birmingham.)

21–24. Cenozoic of Western Montana, field conf., Missoula, Mont. (A. E. Wood, Soc. of Vertebrate Paleontology, Dept. of Biology, Amherst College, Amherst, Mass.)

23–25. Rural Sociology Soc., annual, Pullman, Wash. (H. F. Lionberger, Dept. of Rural Sociology, Univ. of Missouri, Columbia.)

The following 25 meetings are being held in conjunction with the AIBS meetings at Bloomington, Ind.

American Feros Soc., annual. (Miss M. E. Faust, 501 University Pl., Syracuse 10, N.Y.)

American Microscopical Soc., annual.

American Phytopathological Soc., 50th anniversary. (W. B. Hewitt, Dept. of Plant Pathology, Univ. of California, Davis.)

American Soc. of Ichthyologists and Herpetologists, annual. (R. Conant, Philadelphia Zoological Garden, 54th and Girard Ave., Philadelphia.)

American Soc. of Limnology and Oceanography. (B. H. Ketchum, Woods Hole Oceanographic Inst., Woods Hole, Mass.)

American Soc. of Naturalists. (B. Wallace, Long Island Biological Assoc., Cold Spring Harbor, N.Y.)

American Soc. of Parasitologists, annual. (P. E. Thompson, Research Div., Parke Davis & Co., Detroit 32, Mich.)

American Soc. of Plant Physiologists, annual. (G. R. Noggle, Dept. of Botany, Univ. of Florida, Gainesville.)

American Soc. of Plant Taxonomists. (R. F. Thorne, Botany Dept., State Univ. of Iowa, Iowa City.)

American Soc. of Zoologists. (S. Crowell, Dept. of Zoology, Indiana Univ., Bloomington.)

Biometric Soc., EN. R. (T. W. Horner, General Mills, Inc., 400 Second Ave., S., Minneapolis 1, Minn.)

Botanical Soc. of America, annual. (H. C. Bold, Dept. of Botany, Univ. of Texas, Austin 12.)

Ecological Soc. of America. (J. E. Cantlon, Dept. of Botany and Plant Pathology, Michigan State Univ., East Lansing.)

Mycological Soc. of America, annual. (E. S. Beneke, Dept. of Botany and Plant Pathology, Michigan State Univ., East Lansing.)

National Assoc. of Biology Teachers. (P. Fordyce, Broad Ripple High School, Indianapolis, Ind.)

Nature Conservancy. (G. B. Fell, 4200 22 St., NE, Washington 18.)

Phylogenetic Soc. of America, annual. (W. A. Daily, Dept. of Botany, Butler Univ., Indianapolis 7, Ind.)

Potato Assoc. of America, annual. (R. V. Akeley, Crops Research Div., USDA, Plant Industry Station, Beltsville, Md.)

Society for Industrial Microbiology, annual. (C. L. Porter, Dept. of Biological Sciences, Purdue Univ., West Lafayette, Ind.)

Society of Protozoologists, annual. (N. D. Laine, College of Veterinary Medicine, Univ. of Illinois, Urbana.)

Society for the Study of Development and Growth. (R. O. Erickson, Dept. of Botany, Univ. of Pennsylvania, Philadelphia.)

Society of Systematic Zoology. (R. E. Blackwelder, Box 500, Victor, N.Y.)

Tomato Genetics Cooperative. (E. C. Stevenson, Horticulture Dept., Purdue Univ., West Lafayette, Ind.)

24–29. Mental Health, world federation,
11th annual, Vienna, Austria. (Miss E. M. Thornton, World Federation for Mental Health, 19 Manchester St., London, W.1, England.)

24–30. Prehistoric and Protohistoric Science, 5th intern. cong., Hamburg, Germany. (Büro des Internationalen Kongresses für Vor- und Frühgeschichte, c/o Fremdenverkehrs- und Kongresszentrale, Hamburg 1, Bieberhaus, Hachmannplatz.)

25–28. Mathematical Assoc. of America, 39th summer, Cambridge, Mass. (H. M. Gehman, Univ. of Buffalo, Buffalo 14, N.Y.)

28–2. Biometric Soc., ENAR, Ottawa, Ont., Canada. (T. W. Horner, General Mills, Inc., 400 Second Ave., S., Minneapolis 1, Minn.)

31–8. Corpuscular Photography Colloquium, 2nd intern. (by invitation), Montreal, Canada. (F. Demers, Institut de Physique, Université de Montreal, P.Q.)

September

1–6. Biochemistry, 4th intern. cong., Vienna, Austria. (O. Hoffmann-Ostenhof, 1, Chemisches Institut der Universität, Währingerstrasse 42, Vienna IX.)

1–7. Psychotherapy, intern. cong., Barcelona, Spain. (M. de la Cruz, Clínica Psiquiátrica Universitaria, Facultad de Medicina, Barcelona.)

1–13. Peaceful Uses of Atomic Energy,
8–17. Sociology, 18th intern. conf., Nürnberg, Germany. (International Inst. of Sociology. Findelgasse 7–9, Nürnberg, Germany.)
13–17. Bronchoesophagology, 7th intern. conf., Kyoto, Japan. (C. L. Jackson, 3401 N. Broad St., Philadelphia 40, Pa.)
14–20. Ceramics Cong., 6th intern., Wiesbaden, Germany. (Sekretariat des VI Internationalen Keramischen Kongresses, Reuterstrasse 235, Bonn/Rh., Germany.)
14–21. Cardiology, 3rd world cong., Brussels, Belgium. (F. Van Dooren, 80, rue Merci, Brussels.)
15–20. Agriculture, European Confederation 10th anniversary, Vienna, Austria. (European Confederation of Agriculture, Pestalozziestrasse 1, Brugg, Argovie, Switzerland.)
16–24. Glacier Movement Symp., Chamonix, France. (International Assoc. of Scientific Hydrology, 61, rue de Ronce, Gengutre, Belgium.)
21–25. Differential Anthropology, 5th intern. cong., Amsterdam, Netherlands. (Secretary, 4th Carboniferous Cong., Geological Bureau, Linnaeusstraat 2A, Amsterdam.)
22–25. Scientific Instruments of the 16th to the 19th century, symp., Frankfurt/Main, Germany. (International Union for the History and Philosophy of Science, 4, rue Thenard, Paris 5, France.)
23–25. Fat Research, 3rd intern. cong., Seville, Spain. (J. M. Martinez, Instituto de la Grasa, Avenida de Heliopolis, Seville.)
The preciseresponse and fatigue. Magnifications of 100 X to 2000 X without adjustment. The "Cailloux" advanced design combines maximum speed, precise response and stability with unusual ease of operation. Back-lash, parasitic vibrations and lag are eliminated. Prolonged manipulations can be conducted without fatigue. Includes many additional exclusive features.

LOW IN PRICE
C. H. STOEITNG COMPANY
Write for additional information
424 N. HOMAN AVE., CHICAGO 24, ILL.
Letters

General Semantics

There is unquestionably a need for such a book as Martin Gardner's *Fads and Fallacies in the Name of Science* [reviewed by John Pfeiffer in *Science* (126, 1296 [1957])]. But there is always a danger that an overzealous debunker will throw out the baby with the bath water. And while certain "fads and fallacies" are obviously so, our debunker, who, after all, cannot be an informed specialist in every field of science, might easily be guilty of some "fallacies" himself. Such seems to be the case with Gardner, whose lumping of Alfred Korzybski and General Semantics [Nonaristotelian Systems and General Semantics] with the inanities of Velkovsky, Hubbard, and Reich is comparable to lumping the latter three with B. F. Skinner or Carl Rogers or Julian Huxley.

The scientific "respectability" of Korzybski's *General Semantics* is no longer seriously questioned (except by Gardner), for as a school of thought in the behavioral sciences it has actually gained at least as much "respectability" as Freud's psychoanalysis, if not more, and has blossomed into a significant International Society for General Semantics. Courses in general semantics are currently being offered by the University of Chicago and other universities of considerable "respectability," and the literature of general semantics features such prominent names as those of S. I. Hayakawa, Wendell Johnson, and Anatol Rapaport. Further, the large number of psychiatrists, psychologists, and other scientists who would disagree with Gardner's misclassification of general semantics as a "fad" or "fallacy" would seem to indicate that Gardner's ambitious attempt to draw a precise line between science and pseudoscience is neither 100 percent trustworthy nor 100 percent successful. Actually, any attempt to set up an "infallible authority" to distinguish between science and nonscience is bound to fail. Both Rome and Moscow have tried this and made themselves look rather silly.

Edd Doerr

Bogotá, Colombia

I agree with most of Edd Doerr's statements, having made the same points in my book. In both the "Introduction" and the final chapter, I discuss at some length the spectrum of science and pseudoscience and the extreme difficulty of drawing a precise line between them. I approached Count Korzybski's work by specifically pointing out that he was not to be classed with most of the men mentioned in the book (I made a similar distinction in respect to J. B. Rhine), and I emphasized the fact that I was attacking only the doctrines which were original with the Count.

Many people do not realize that "semantics" is an old and highly respected branch of meaning analysis and that the Count simply drew heavily from this tradition and popularized it. College courses in semantics, even those taught by the Count's reputed followers, are little more today than elementary excursions into this field. Where Korzybski simply passed on a semantic common-place, naturally no one disagrees, but in respect to those doctrines which are peculiar to the Count, one would be hard put to find a single philosopher of science today who did not agree with the acid opinion of Ernest Nagel, quoted in my book.

Martin Gardner

Dobbs Ferry, New York

"Paramecium Controversy"

A recent addition to what is apparently developing into "the Paramecium controversy" was contributed by Kellogg (1), who presents a view of the main reason for disagreement between Gelber (2) and Jensen (3) that is rather surprising. According to Kellogg, Gelber hypothesizes that learning is characteristic of all living tissue, while Jensen restricts learning to the higher levels on the phylogenetic scale. These extreme views are not clearly expressed by either Gelber or Jensen in the articles cited by Kellogg.

Kellogg cites other studies of apparent learning in paramecia and, in referring to one report, states that French (4) "gives seemingly unequivocal evidence of trial-and-error learning in paramecia." "Unequivocal evidence" is a slippery quantity and, as Kellogg points out, there have been reports of negative findings also. Gelber, in an early publication (5), referred to many of the articles that Kellogg accuses both her and Jensen of neglecting to use as evidence.

In a very recent article Katz and Deterline (6) report the results of a replication of Gelber's basic study (5). The experimental design included several control groups set up for the purpose of testing the conflicting views of Gelber and Jensen. Jensen attributes the observed change in the behavior of paramecia in the Gelber studies to the presence of food, apart from any inference of learning. Katz and I came to the conclusion that Jensen's more conservative explanation is more credible than Gelber's. This does not mean that we deny that paramecia have the ability to learn. That phenomenon remains a fascinating possibility. We do insist that Gelber's technique does not isolate the phenomenon in an unequivocal fashion.

Apparently perception is an even bigger problem in psychology than is usually realized. Katz and I observed the be-
behavior of our paramecia in replications of studies reported by Day and Bentley (7) and Smith (8) as well as of the study by Gelber. The paramecia behaved in some cases exactly as described by those authors, but our perceptual interpretations of the behavior we observed did not permit us to state that we saw paramecia behaving in a manner that indicated that a learned modification of behavior had occurred. Gelber perceives the same changes as evidence of learning. Now we find that we do not even view the Gelber-Jensen controversy in the same way that Kellogg does. Until a more satisfactory method is devised, the question of whether or not paramecia can learn will remain a perceptual one and, as such, will not receive a scientific answer.

William A. Deterline
Department of Psychology,
Alma College, Alma, Michigan

References
7. L. M. Day and M. Bentley, J. Animal Behavior 1, 67 (1911).

There is little I can say (1) in reply to William A. Deterline except that I find no cause for basic disagreement either with the tone of his letter or with the research report of Katz and Deterline (2).

My only regret is that the meaning of my original comments appears not to have been quite clear. I tried to point out that centuries before there was any research whatever on the learning or nonlearning of paramecia, philosophers had debated the question of whether low organisms can learn and "have minds."

Today, when we do have research data to support our speculations, there still seems to exist the same sort of controversy. For now the experimental results are open to two interpretations: (i) that they demonstrate learning in paramecia and (ii) that they do not demonstrate learning. If expressed in terms of hypotheses, the position taken by Gelber (3) is the positive one—namely, that paramecia and probably other low organisms can learn. The hypothesis which appears to describe Jensen's position (4) is that lower organisms move mechanistically and are incapable of learning. These two positions are not unrelated to the vitalistic-mechanistic controversy, with roots far in the past. Thus Descartes held that all animals—high as well as low—behave like machines and that man alone possesses higher "mental" abilities.

I seem to have detected in some recent reports that have been written on the
subject a kind of emotional or anthropocentric intolernce which looks with scorn upon the possibility of learning in lower organisms—as if the very thought of it were beneath the level of scientific thinking. Happily, there is no evidence of such a bias in the article by Katz and Deterline (2).

Those who maintain that learning in paramnesia or in other Protozoa has not been demonstrated should acquaint themselves with the literature on the subject and should not close the door upon such a possibility. Some of this literature was cited in my original note (1). Those who adopt the more liberal attitude and hold that the available data do demonstrate learning should still realize that there is room for a negative position. Let not emotional bias for either view disturb a fair and intelligent appraisal of the evidence.

We need much more evidence before either position can be swept aside.

W. N. Kellogg
Department of Psychology,
Florida State University, Tallahassee

References

Equipment

The information reported here is obtained from manufacturers and from other sources considered to be reliable. Science does not assume responsibility for the accuracy of this information. A coupon for use in making inquiries concerning the items listed appears on page 156.

MOISTURE METER is a portable, transistorized instrument powered by mercury batteries. The instrument measures d-c resistance of woods to determine moisture content from 6 to 70 percent in three ranges. Normal battery life in the instrument is 2 yr; approximately 100,000 tests may be made before replacement becomes necessary. (Moisture Register Co., Dept. 151)

RADIOACTIVE-GAS SURVEY METER is intended primarily as a tritium detector. It consists of an ionization chamber through which air is continuously drawn by means of a blower operated by a self-contained storage battery. Ion current is indicated on a meter relay which can be adjusted to actuate an alarm. Half-scale sensitivities are 1, 10, 100, and 1000 μc of tritium per liter. Gas-flow rate is 325 liter/min. The instrument can be operated for 12 hr without recharging the battery. (Levinthal Electronic Products, Inc., Dept. 161)

TORSIONAL-DAMPING TESTER uses free oscillations for investigation of torsional elasticity and damping effects in plastics, rubber, and similar materials. The instrument’s testing chamber can be heated or cooled by auxiliary apparatus and can be filled with protective gas. Oscillation of an inertia disc suspended from the specimen is photographed by means of a mirror attached to the disc. Interchange of discs permits variation of frequency from about 0.1 to 20/sec. (William J. Hacker & Co., Inc., Dept. 156)

TIME-INTERVAL MEASURING INSTRUMENT operates by converting the time interval being measured to an electrical pulse of proportional height. The pulse thus obtained is fed to a 20-channel pulse-height analyzer. The channel in which the pulse is registered measures the original time interval, each channel corresponding to a known interval. Intervals in the nanosecond (10⁻⁹ sec) range are said to be measurable. (Eldorado Electronics, Dept. 154)

COLOR-TOLERANCE COMPUTER simplifies specifying and classifying color by reducing tristimulus values to a single numerical value, ΔE. This value is indicated on a dial calibrated in NBS units. The instrument further calculates the type and magnitude of color deviation in lightness-darkness, redness-greenness and yellowness-blueiness. Color corrections can be simulated on the computer to determine their effects before actual changes are made. (Instrument Development Laboratories, Inc., Dept. 168)

COUNTING-RATE METER features seven counting ranges from 200 to 200,000 counts/min. Time constants of 3, 10, and 30 sec are provided for short- or long-term observation. High-voltage regulated power, continuously variable from 550 to 2000 v, is supplied with the instrument. Regulation is 0.1 percent for 1 percent change in line voltage. Provision is made for operation of a 1-ma or a 10-mv recorder. (B. J. Electronics, Dept. 162)

REMOTE-HANDLING TOOL is available with either a 3- or 4-ft handle assembly. Four different jaw attachments permit handling of objects ranging in size from a 7-in. sphere to a 1/32-in. nut. Four mounting plates are provided for storage of the jaws. The handle may be remotely withdrawn or inserted into the jaw attachments without manual contact. (Atomic Accessories Inc., Dept. 163)

TIME-INTERVAL INDICATOR is applicable to measurement of the time interval between any two points of a single or double pulse. The instrument comprises two attenuators and two cathode followers, a step-variable delay line and a

TUBES: CENTRIFUGE OR TEST and CLOSURES by NALGE

Really good... reliable, unbreakable!

DATA: Now formed from polypropylene... the latest plastic development. Friction fit closures have knurling for easy handling.

PROPERTIES: High temperature resistance... increased clarity... greater tensile strength... can be autoclaved repeatedly.

Ask your dealer for catalog G 358

TUBES and CLOSURES

<table>
<thead>
<tr>
<th>Size No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim. mm</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Cap. ml</td>
<td>3.5</td>
<td>6.5</td>
<td>12</td>
<td>13</td>
<td>18</td>
<td>50</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>Each</td>
<td>.22</td>
<td>.23</td>
<td>.25</td>
<td>.27</td>
<td>.28</td>
<td>.33</td>
<td>.35</td>
<td>.55</td>
</tr>
</tbody>
</table>

140.90 per doz.

10.00 1.00 1.35 1.50 1.00

Less Quantity Discounts

WORLD'S LARGEST PRODUCER OF PLASTIC LABORATORYWARE
ULTRAVIOLET 220-440 m\(\mu\) High efficiency and resolution.
UV-VISIBLE 220-650 m\(\mu\) Suitable for a wide variety of applications. 8”x8”x4”, weight 4 lbs.
VISIBLE 400-700 m\(\mu\)
INFRARED 700-1400 m\(\mu\)
INFRARED 700-2800 m\(\mu\)

For Complete details, Bulletin No. 811

A valveless pump that offers the ultimate in freedom from contamination of the liquid pumped, either from the pump itself or from previously pumped liquids. For infusing accurately small volumes of solutions at the rate of 0.5 ml through 25 ml with a variation of less than 5% at pressures up to 200 mm Hg. Delivery rate can be changed rapidly by means of a simple screw adjustment. A graduated scale makes it possible to accurately reproduce desired rates. Stopping to refill syringe is eliminated by use of a reservoir. The length of delivery run is determined by volume of reservoir.

CAT. NO. 70-146

PHIPPS & BIRD, INC.
Manufacturers & Distributors of Scientific Equipment
6th & Byrd Streets - Richmond, Va.
How High Quality is Assured in SCHWARZ Biochemicals

Some SCHWARZ Fine Chemicals for Industry and Research

- Purines and Pyrimidines
- Phosphorylated Adenosine Compounds
- Cozymase
- Nucleosides and Nucleotides
- Nucleic Acids and Metallic Nucleates
- Sugar Phosphates
- Glutathione
- Sulphydryl Reagents
- Sugars
- Triphenyl Tetrazolium Chloride
- Deoxynucleosides
- Optically Standardized Amino Acids
- Radioactive Chemicals

High Specifications Are Established
A specification sheet delineates the quality of every chemical manufactured by Schwarz. These specifications are prepared in our Research Laboratories and are based on careful literature searches for the correct values.

Each Lot Must Meet These Specifications
Every lot of Schwarz compound is analyzed in our Control Laboratories before it leaves the production laboratory. Each assay must meet the specifications set forth. The assay slip must be approved by the head of our research group.

Complete Records Are Kept For Each Lot
A lot number appears on every shipment of fine chemicals made by Schwarz. A copy of the analysis of each lot is filed in our Order Department—so every purchaser instantly may be given data he may need.

Extensive Research Is Maintained
Schwarz research is intensively directed to the commercial production of cell substances. Schwarz Laboratories was the first and in many cases is the only manufacturer of a number of important biochemicals.

All Operations Are Guided By Long Experience
Schwarz Laboratories has a long record of accomplishment and leadership in manufacturing biochemical intermediates. It is the oldest and largest manufacturer in the world of nucleic acid and its related derivatives. You can rely on Schwarz.

continued