Selecting the Next Generation

The traditional method of selecting the next generation of scientists is highly personal: the master chooses his own apprentices, arranges some method to help finance their graduate education, tutors them for several years, and then sponsors them as they seek positions of their own. The masters are usually satisfied with this method, and can justify it by a large number of successes. But perhaps their satisfaction also reflects the common tendency to be blind to one's own errors. The statistically minded critic is always skeptical of a situation in which the same person makes a decision and then decides whether that decision was good or bad.

It is difficult to investigate the accuracy of many masters in selecting their own apprentices. But one can study the supplementary methods used in large fellowship programs such as that of the National Science Foundation. Under this program, the Office of Scientific Personnel of the National Academy of Sciences-National Research Council arranges for panels of scientists to review statements of each candidate's research plans, transcripts of his academic record, his scores on standardized examinations in his field of special interest, and statements by scientists who are acquainted with his earlier work. On the basis of this information each panel rates a number of candidates with whom the panelists are not personally acquainted.

Ordinarily, geologists select graduate students in geology, chemists select those in chemistry, and so on. But is such segregation of the candidates necessary? Could geologists do as good a job as chemists in selecting future chemists, or could a mixed panel of scientists? It would frequently be more convenient to set up the panels if it turned out that they could. Yet common sense says that scientists know their own field better than do their colleagues in other fields, and that they might therefore be biased in judging candidates in their own fields. Without deliberate intent, without in fact awareness of what he is doing, a judge might give a higher rating to a candidate in his own field because he understands better the candidate's research proposal, gives greater weight to recommendations from people whom he knows, or evaluates more highly grades in courses in his own field.

The Office of Scientific Personnel has studied this question of bias, in several ways, over several years, with various kinds of panels of judges, and in sufficient detail to reach a clear and convincing conclusion: there is no bias. Some candidates are rated above others, and the candidates in one field may average higher than those in another, but the differences are in the candidates, not the judges. Fellowships go to the same candidates whether they are rated by scientists in their own field or in other fields. (Details are available in the Office of Scientific Personnel's Technical Report No. 12.)

This is a comforting finding. It speaks well for the objectivity and integrity of the panels of judges. It means that one need have no misgivings about the use of interdisciplinary panels in selecting fellowship holders. But it leaves unanswered the more fundamental question of how often fellowships are awarded to the right, and how often to the wrong, candidates. The scientist-judges are free from bias, but that does not mean that they are free from error. The Office of Scientific Personnel is studying this point also, and in due course will have some interesting things to say about the validity of their fellowship selection techniques. It is too bad that similar studies cannot be made of the master choosing his own apprentices, for it would be fun to compare the batting averages of the two methods.—D.W.
Neutron Activation Analysis-XI

The irradiation of most atomic nuclei by very slow (thermal-velocity) neutrons causes these nuclei to become radioactive. The subsequent emission of beta or gamma radiations from these nuclei is characteristic of the particular isotope. If the energy and rate of emission of the radiations are known, the isotope can be identified.

The magnitude of the radioactivity is directly related to the amount of the isotope present in the neutron-bombed sample. Since the detection of radioactivity is an extremely sensitive technique, to the point that individual particles or quanta of radiation can be counted, neutron activation analysis permits the accurate appraisal of very small amounts of an element — often smaller than can be readily detected by normal analytical techniques.

Advantages in Activation Analysis

Neutrons are able to pass through a considerable thickness of most substances. It is possible, therefore, to analyze materials in solid, liquid, or gaseous phases, usually with a minimum of sample preparation. A relatively short time is expended in a single analysis — an advantage where large numbers of samples are involved. The radioactivity created in the process is, for the most part, of short duration and low intensity, necessitating only reasonable care in the handling of the bombarded samples.

Neutron activation analysis is a relatively new technique whose

The Van de Graaff® as a Neutron Source

Prolific neutron outputs are obtainable from Van de Graaff positive-ion accelerators, from the Be\(^9\) (d, n)B\(^{10}\) reaction. The neutrons from this reaction emerge from the beryllium target in all directions with an angular distribution which is not quite isotropic, but has an asymmetry in the forward direction of the neutron beam of about 2:1.

The neutrons emerge with energy groups in the 0.7- to 7-Mev range. To slow these energetic neutrons down to "thermal" velocities (in the region of 2200 meters/second, corresponding to about 0.02 ev), a moderating mass of paraffin, water, or similar hydrogenous material surrounds the neutron-producing target. Inside the moderator, thermal neutrons travel in all directions, producing a neutron flux measured in terms of neutrons per second passing through an area of one square centimeter (n/sec-cm\(^2\)).

Samples can be placed inside the moderator for neutron bombardment, by inserting them into a hole about 2 cm from the target, to take advantage of the maximum flux. Reasonably large samples can often be accommodated in the volume within a 6-cm radius from the target, with a flux variation less than a factor of two, especially if they are aqueous solutions or organic materials.

Activation analysis offers solutions to many serious problems in research or in process control. Detailed information about activation analysis, including tabulation of thermal-neutron activation characteristics of the isotopes, is available on request.
or not by the taking of this medicine. In the 1920’s, while doing research on cancerous cells, Warburg found a reduced cellular metabolism, with intensified fermentation. For a long time it was not possible to repeat these experiments in other laboratories, because of the extreme difficulty of the measuring technique, but, through the use of isotopes, these results have been confirmed and carried further. Today we consider tumorous cells to be deteriorated cells, marked by certain morphological structures, and we notice a loss of the mitochondria. This degeneration can also be noticed in the metabolism of these cells through the loss of certain enzyme systems, like respiration ferments. This can be caused through the inhalation of destructive matter or through wrong nutrition during part of the lifetime of an organism, or as a result of other, not yet defined, injuries.

In the last few years it has been possible to combine many single results, and in this way it was found, for instance, that the activity of the cytochrome oxidase and the oxysuccinic acid in sarcomas are only one-fifth those in normal liver cells. A reduction of the catalase content was also noted. The effect of effective cytostatica, like triophosphate dehydrogenase, for instance, today can be seen in these enzyme systems. Lewisite compounds not only made tumors disappear but also caused tumors, and thus could only be used within limitations. Arsenic and heavy metals (such as lead and gold) are not in great use any more today. But great interest was aroused in the group of the antimetabolites, which include the cytostatica. These were able to prolong the life of leukemia-stricken children by years. Specific and nonspecific albumin therapy in the meantime also brought some success. Cortisone alone or in combination with mercaptopurine showed certain results. Further research is in progress on ways to increase the prophylactic forces in the organism by extracting preparations from tissues immune to tumors. These substances, however, cannot be considered as real cytostatica. The treatment with heterosexual hormones brought good results with carcinoma of the prostate, but there is the fundamental question whether the majority of these tumors can still be considered as genuine cancer. Overdoses, which are quite often given, result in an inverse effect (mammary gland carcinoma). Among the antibiotics there can also be found cytostatic substances, such as actinomycin C and D, which show success with lymphogranulomatosis and Hodgkin’s disease. In the meantime new actinomycins have been found, but they have not yet been used in clinics. “That there really are chemotherapeutical drugs to cure cancer has never been stated in any scientific publication, nor has it ever been mentioned in any lecture, only in non-critical newspapers and magazines,” stated Domagk.

We can talk about a supplementary chemotherapy of cancer, and in this connection the so-called ethylene iminochinos are of special interest. These substances, belonging to the groups of the cytostatica, not only retard the growth of tumors but also inhibit the growth of normal human, animal, and plant cells. With these substances, the germination of wheat can be stopped. Therefore care must be exercised in administering these drugs in people who are capable of procreation, since these substances are able to change the genes, just like X-rays and other radioactive rays.

These cytostatica can be used only on patients with tumors on which it is too late to operate, and we should be grateful that in this way we are able to prolong the life of the patient under tolerable circumstances. E 39, in the form that is soluble in water, promises a better method of application, as has already been observed on animals which were under constant control for 45 days. It could be confirmed by microscopic examination that tumors of the size of walnuts had decreased considerably. But
NEW! CAPILLARY TUBING
MADE TO PRECISION TOLERANCES

As a result of several years of intensive experimentation, we are now in a position to furnish capillary tubing to extremely close specifications. For example, our stock sizes up to 1.25mm O.D., are guaranteed to come within a tolerance of plus or minus 0.01mm. For special applications, this tolerance may be brought down to plus or minus .005mm or better.

Standard wall thickness runs approximately .05 to .1mm, depending upon outside diameter. When extremely small bore is required, the wall can be made correspondingly heavier.

Tubing is excellent as to concentricity and can be made from soft or Pyrex glass.

The following items, made from Precision Capillary, are now available:

"MICROCAPS" These are disposable micro-pipettes which contain a definite amount from end to end and are filled by capillary attraction and are discharged by means of a small rubber bulb. They are made in many sizes from 1 to 50 lambda (microliters) capacity.

Microhematocrit tubes: made to a tolerance of 0.01mm, with uniform 0.1mm wall and parallel from end to end.

Blood Coagulation tubes: It has been found by hematologists that when these tubes are made uniform as to bore, results were much more constant.

Tubing for making up dissecting needles for Micro Manipulators.

Precision Capillary tubing as described above opens up many new fields in Science. If you have a problem on which we might be of help, Please write us.

DRUMMOND SCIENTIFIC CO.
524-526 North 61st St.
Philadelphia 31, Pa.

PHOTOVOLT Line-Operated
Multiplier FLUORESCENCE METER
Mod. 540

- High-sensitivity for measurement of low concentrations (full-scale setting for 0.001 microgram quinine sulphate)
- Micro-fluorimetry with liquid volumes as low as 1 ml
- Low blank readings, strict linearity of instrument response
- Universally applicable due to great variety of available filters, sample holders, adapters and other accessories
- Interference filters for high specificity of results and for determining spectral distribution of the fluorescent light
- High-sensitivity nephelometry for low degrees of turbidities
- Fluorescence evaluation of powders, pastes, slurries, and solids, also for spot-tests on filter paper without elution

Write for Bulletin #392 to
PHOTOVOLT CORP.
95 Madison Ave.
New York 16, N. Y.

The Motility of Muscle and Cells

By HANS WEBER. The experimental data of this study have been arranged in such a way as to show clearly the conditions in the interior of muscles and cells necessary for producing contraction on the one hand and relaxation on the other. The difference between the conditions necessary for the movement of certain organelles of cells and those for muscular contraction and the muscelike contraction of the cells has been shown, giving evidence that Nature invented several very different mechanisms of movement. And an attempt has been made to synthesize the known experimental data on muscular movement and musclelike cell movement into a new theory of contraction. The 1957 Dunham Lectures. Illustrated. $3.50

Through your bookseller, or from

HARVARD University Press
79 Garden Street, Cambridge 38, Mass.
one should not be misled by these experiments, since some animals, when under treatment, refuse all food. But during the experiments described above the animals gained weight, which means that E 39 has a “tumor specific” effect.

With surgery we try to eliminate the tumors completely as possible, but success is very rare, especially when one considers the metastases. Good results are also obtained by means of radiation therapy, but in this treatment one must consider that radiation therapy also destroys the natural prophylactic forces of the body. Therefore the smallest dose possible is applied in therapy for malignant tumors, and one has to be extremely careful to hit the tumorous cells only. By now it is very well known which tumors are best removed through surgery and which ones should be exposed to radiation therapy. Chemotherapy is applied only to tumors which can neither be removed through surgery nor treated with irradiation, and so the chemotherapy has by far the most difficult task to accomplish. It therefore cannot be expected that all treatments of malignant tumors by chemotherapy can be successful. Lately, intravenous injections of ethylenimine compounds have been rather successful. Whether the climate of the North Sea has something to do with the success of these treatments is hard to determine. Research is being done on these questions at the University Clinic for Throat, Nose, and Ear in Münster in Westfalen, Germany.

It must be understood that a body stricken with cancer generally is a weakened organism, a fact which is also to be taken into account in regular treatments. The individual thus stricken should seek rest and a suitable climate for the chemotherapeutical, surgical, and radiation treatments. These requirements are even more important for the cancer patient than they are for the tuberculosis patient. We know from experience that in a case of oxygen deficiency—that is to say, in a poorly aired room—animal tumors grow faster than in the climate of the North Sea. The living conditions of people in big cities become more and more unnatural as a result of exhaust fumes, dust, and so forth, and thus the number of cases of cancer will steadily increase. To quote Domagk: “In therapy we will have to be satisfied, for the present at least, with a certain equilibrium between body cell and tumorous cell, even if the tumor cannot be completely eliminated. We will be satisfied if we can slow down its growth, in order to preserve the life of the patient longer and under bearable conditions. In this case too, we have to learn to think more physiologically and less naively. The chemotherapy of cancer still is in its very beginning and will have to be further extended. The observations we have collected to the present day show that not only leukemia but also carcinomas and sarcomas can be influenced through cytostatics. This seems to be the most important result for the further development of the therapy. The results of these experiments can be related to the treatment of different malignant tumors in man, at least in principle, and this is decisive for further experiments.”

Antibiotics

“The influence of antibiotics on human society has been so tremendous that one was almost tempted to call the present era the age of the antibiotics instead of the atomic age.” With these words, Selman A. Waksman (New Brunswick, N.J., U.S.A.), started his talk on the social significance of the antibiotics. This scientist, who was awarded the Nobel prize for physiology and medicine in 1952, is the discoverer of streptomycin, which has shown good results in the treatment of tuberculosis in particular.

Through the progress of practical medicine and public health efforts, the life expectancy of man, which was about 30 years in the 18th century, has been increased to about 70 years. If medicine continues to develop at the
same pace, the life expectancy should reach almost 100 years by the end of this century. These prolongations of the life span can be explained through the fact that diseases, particularly in infancy, are much better controlled than they used to be. Although tuberculosis could be controlled to a certain extent one hundred years ago, nevertheless 500 out of every 100,000 persons died (this includes deaths in all countries of the world). Last year the mortality in the United States and in some European countries was down to about 10 per 100,000.

Streptomycin, the first of the drugs used in the medical treatment of tuberculosis, was soon followed by others, such as para-aminosalicylic acid. Lately it has been discovered that isonicotinic acid hydrazide has healing effects in tuberculosis. Since 1940, the year of the discovery of the first antibiotic, many epidemics and infectious diseases have been treated with great success—diseases such as pneumonia, syphilis, typhoid fever, typhus, tularemia, undulant fever, plague, and cholera.

The amazing success of the application of antibiotics also caused great social changes, which I will discuss shortly. The almost complete abolition of diseases of childhood as a result of the use of antibiotics can be shown best in the figures on tubercular meningitis. Until 1946, with no chemotherapy available for this disease, the mortality was 100 percent. In 1947, with the introduction of streptomycin, the mortality was 80 percent. In 1950, with para-aminosalicylic acid therapy also in use, the mortality was 50 percent. And in 1953, with isonicotinic acid hydrazide complementing the other two drugs, mortality was down to 15 percent. Countries which previously had a great mortality among infants, which served as a brake on the constant rise of the population, now are facing serious problems in the fields of economics and population policy, such as birth control.

The prolongation of the life span of the average human being poses the problem of finding ways to look after older people and of finding work for them. Countries which are already overpopulated and have a steadily increasing number of jobless people face a serious social problem. A slow decrease in the number of hospitals and sanatoria can be predicted. Just consider the formerly prolonged treatment of tuberculosis. The increased tendency toward ambulatory treatment of patients should not be overlooked, either. In the future, a short period in the hospital will be followed by treatment on the outside by the family physician. Greater safety in the use of vaccine preparations has been made particularly evident with the development of vaccines against virus infections such as poliomyelitis. An increase in the production of food has been achieved in the United States and in some European countries was down to about 10 per 100,000.

Streptomycin, the first of the drugs used in the medical treatment of tuberculosis, was soon followed by others, such as para-aminosalicylic acid. Lately it has been discovered that isonicotinic acid hydrazide has healing effects in tuberculosis. Since 1940, the year of the discovery of the first antibiotic, many epidemics and infectious diseases have been treated with great success—diseases such as pneumonia, syphilis, typhoid fever, typhus, tularemia, undulant fever, plague, and cholera.

The amazing success of the application of antibiotics also caused great social changes, which I will discuss shortly. The almost complete abolition of diseases of childhood as a result of the use of antibiotics can be shown best in the figures on tubercular meningitis. Until 1946, with no chemotherapy available for this disease, the mortality was 100 percent. In 1947, with the introduction of streptomycin, the mortality was 80 percent. In 1950, with para-aminosalicylic acid therapy also in use, the mortality was 50 percent. And in 1953, with isonicotinic acid hydrazide complementing the other two drugs, mortality was down to 15 percent. Countries which previously had a great mortality among infants, which served as a brake on the constant rise of the population, now are facing serious problems in the fields of economics and population policy, such as birth control.

The prolongation of the life span of the average human being poses the problem of finding ways to look after older people and of finding work for them. Countries which are already overpopulated and have a steadily increasing number of jobless people face a serious social problem. A slow decrease in the number of hospitals and sanatoria can be predicted. Just consider the formerly prolonged treatment of tuberculosis. The increased tendency toward ambulatory treatment of patients should not be overlooked, either. In the future, a short period in the hospital will be followed by treatment on the outside by the family physician. Greater safety in the use of vaccine preparations has been made particularly evident with the development of vaccines against virus infections such as poliomyelitis. An increase in the production of food has been
made possible through elimination of various infectious diseases in plants and animals and, moreover, improvements in food preservation have been made by adding antibiotics to food products. Another tremendous area of progress is that of the psychological attitude toward disease. There need be, in the future, no more panic and fear of epidemics and diseases which used to decimate the human race. The fact that venereal diseases can be controlled harbors also a great danger and may lead to an unimaginable degree of carelessness concerning mental and physical hygiene. The appearance of certain new diseases needs

definite attention. This fact is connected with the reduction of natural resistance. Nevertheless, one should not overemphasize this problem.

The situation of the physicians has changed too. They have at their disposal a great many antibiotics which they can use, but they have to judge in each case whether, by killing the primary cause of the disease, they may not activate a secondary disease germ. No physician should allow himself to let antibiotics replace his reasoning.

The extensive use of antibiotics is another social aspect. In the first place, there exists the tendency toward self-treatment. Then there is the patient’s expectation of a rapid cure, and if it is not forthcoming, he blames the physician or the antibiotic. As Waksman remarked, “In the case of severe chronic diseases or diseases of unknown etiology, such as cancer, many have come to expect miracles from newly discovered antibiotics and other drugs. Excessive promises have been made, even to the effect that ‘cures’ will be forthcoming after so much money has been spent for research.”

Paul Hermann Müller (Basel, Switzerland), who was awarded the Nobel prize in 1948 for his discovery of DDT as a contact poison, talked about the further development of the antibiotics and application in agriculture. Ever since 1942, the so-called “antibiotics era,” more than 3500 different substances with antibiotic effect have been discovered, but only 17 preparations have been made available commercially. It is surprising to see their fast spread and increased use in many fields. Since 1950, the production of these extremely helpful chemicals has tripled.

New applications for the protection of staple goods and plants, and in agriculture, are constantly found. In the use of antibiotics for plant protection, the most limited range of action is against fungi; yet the fungus diseases are more important than the bacteria against which the antibiotics have a relatively broad range of action.

One of the few antibiotics with a definite fungicide effect is cycloheximid or actidion, which is a by-product in the production of streptomycin. Actidion is effective against mildew and mint rust and is also used against the disease of cherry trees (Schrottschuss) caused by Clasteroporium carphiophilum AD. In contradistinction to inorganic fungicides it can be used on fruit-bearing trees. For the protection of stored food, and in animal breeding, antibiotics are used more and more. In 1954 about 250 tons were added to animal food, as a growth stimulant. The cause of this effect, however, could not be explained definitely. Thus it is understandable that a certain skepticism still prevails.

New experiments, carried on mostly in Germany, show that effects similar to those produced by antibiotics can be obtained with ordinary substances (for example, nasturtium or horseradish) without side effects (for example, change in the intestinal flora).

The addition of antibiotics to easily perishable foods also presents a certain danger, which should not be overlooked; it creates the possibility that human beings may be constantly given small, uncontrolled amounts of antibiotics. As a result, there is the possibility of a gradual development of resistance by important pathogenic bacteria. Besides this, a change in the intestinal flora may
also appear. In view of these reasons, it is forbidden in the United States to add antibiotics to uncooked food.

In the last three years, more antibiotics have been introduced; these I will mention briefly:

Cycloserine: This has a very broad range of action on Gram-positive and Gram-negative bacteria and against strains of Mycobacterium tuberculosis. It is a 4-amino-3-isoxazolidin with a relatively good stability in an alkaline environment, and has the following structure:

\[
\text{H}_2\text{C} - \text{CH} - \text{NH}_2
\]

\[
\text{O} \quad \text{N} \quad \text{C} \quad \text{O} \quad \text{N}
\]

Gonyleptidin: This antibiotic was isolated from the glands of a South African spider of the Gonyleptidae family, and is effective against 18 kinds of bacteria. It consists of a mixture of various benzoquinones in which 2,3-dimethyl-, 2,5-dimethyl-, and 2,3,5-trimethyl benzoquinone predominate.

Cefaranthin: This is an alkaloid and antibiotic, isolated from the roots of the Stephania cepharantha Hayata. It is effective as a preventive for tuberculosis, leprosy, and whooping cough, and inactivates snake poison and toxine of tetanus. It has the following structure:

\[
\text{CH}_3 \quad \text{N} \quad \text{CH}_3 \quad \text{CH}_3 \quad \text{OH} \quad \text{NO}_2
\]

In this connection, gibberellic acid should also be mentioned. This is not a real antibiotic but, in very small amounts, has physiological effects. The active material, which is extracted from the mushroom Gibberella fujikuroi, strongly influences the growth of plants. In this way the growth of geraniums, roses, sunflowers, beans, pepper, corn, and so on, can be tripled after 4 weeks of treatment. But for application on a large scale in agriculture, more practical experience with this new product is needed.

H. ROTTA
Stuttgart, Germany

We are indebted to Mrs. Heidi Steffen of Purdue University for translating this report from the German.

Forthcoming Events

November

16–21. Radiological Soc. of North

These Schwarz fine chemicals satisfy the exacting requirements of products intended for laboratory and biochemical use.

To assure the user of highest quality and purity, rigid specifications in accordance with latest literature are established for each product, each lot is carefully analyzed and checked before shipment, complete records are permanently kept, and an analysis is furnished the user if desired.

Quantity production resulting from the wide preference and demand for Schwarz high-quality biochemicals provides ample supplies at low cost. Write for informative technical bulletins, specifications, references to literature, and latest complete price list.

SCHWARZ LABORATORIES, INC.
Leading Manufacturers of Yeast Biochemicals and Fine Chemicals
2308 Washington Street, Mount Vernon, New York

17 OCTOBER 1958
A memo to scientists in the laboratories, in the schools, and in executive offices, about

SCIENTIFIC AMERICAN BOOKS

The brilliantly acclaimed paperback series in which news from the frontiers of scientific investigation is reported by men closely involved with the work described. $1.45 each

In a review of Scientific American books, The Bulletin of the Atomic Scientists says they are “of interest not only to the non-scientist but to the professional who wants to be au courant with the latest developments outside his specialization.” Each book, as you may know, is a topical collection of articles from Scientific American magazine, arranged to form an integrated report on current activity in one major field.

“The array of talent assembled for this project” says The New York Times “is nothing short of spectacular. The reader expects authoritative writing from such a group and he is not disappointed. In addition there is communication of a high order.”

Result: Scientists, teachers, engineers and students (the series is increasingly finding its way into the colleges) have to date bought more than 440,000 copies.

Here are the books.

The coupon will bring them to you.

ATOMIC POWER. How nuclear reactors will be used to light homes and turn the wheels of industry, 180 pages, 15 diagrams.

AUTOMATIC CONTROL. The mechanical “nervous systems” that make machines and factories regulate themselves, 148 pages, Illus.

LIVES IN SCIENCE. Biographies of 18 men of science from Galileo to Srinivasa Ramanujan, 288 pages, with portraits in line.

THE NEW ASTRONOMY. A view of the four-dimensional universe via the great new telescopes, 243 pages with drawings, diagrams.

NEW CHEMISTRY. New elements, new reactors, new compounds — straight from the laboratory into industry, 244 pages, Diagrams.

THE PHYSICS AND CHEMISTRY OF LIFE. Life is explained in terms of molecules that make up cells and tissues, 270 pp, Illus.

THE PLANET EARTH. Forces, tides, and currents that stir our planet’s core, crust, oceans and atmosphere, 176 pages, illustrated.

PLANT LIFE. How plants furnish invaluable laboratory subjects for research into problems basic to the study of human life, 256 pp, Illus.

A TWENTIETH CENTURY BESTIARY. A new look at animal behavior — from the bee’s language to curiosity in monkeys. Illus.

THE UNIVERSE. How the two contending schools of modern cosmology put their theories to the test of observation, 160 pp, Illus.

The big 626-page SCIENTIFIC AMERICAN READER is now available in a paperback edition at only $2.25. 50 articles from Scientific American magazine are arranged to give the reader a wide view of today’s scientific knowledge in virtually every area of research from the human brain to the split atom. The Times calls The Reader “in every respect a most useful and exciting book.” Paperback $2.25, Clotbouind edition $6.50

We’re confident that you’ll find these books both valuable and enjoyable. Order them on the coupon below. If you’re not delighted, return them for refund.

— SIMON AND SCHUSTER

MAIL THE COUPON TODAY

To your bookseller, or

SIMON AND SCHUSTER, Dept. S, 630 Fifth Avenue, New York 20, N. Y.

Please send me the following Scientific American Books at $1.45 each.

<table>
<thead>
<tr>
<th>Atomic Power</th>
<th>New Chemistry</th>
<th>The Physics and</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Control</td>
<td>Planet Earth</td>
<td>Chemistry of Life</td>
</tr>
<tr>
<td>Lives in Science</td>
<td>Plant Life</td>
<td>A Twentieth Century</td>
</tr>
<tr>
<td>The New Astronomy</td>
<td>The Universe</td>
<td>Bestiary</td>
</tr>
</tbody>
</table>

Also, please send the Scientific American Reader ______ paper, $2.25 ______ cloth, $6.50

My remittance for $_________ is enclosed. If I am not delighted, I may return the books within 14 days for refund.

Name ____________________________
Address __________________________
City ____________________________ Zone __ State ___________

America, Chicago, Ill. (D. S. Childs, 713 E. Genese St., Syracuse, N.Y.)

17–22. Radiological Soc. of North America, Chicago, Ill. (D. S. Childs, Sr., 713 E. Genesee St., Syracuse 2, N.Y.)

18–22. Pan-American Dental Congr., Mexico-City, Mexico, (Association Dental Mexicana, Sinaloa 9, Mexico 7, DF, Mexico.)

19–21. Electrical Techniques in Medicine and Biology, 11th annual conf., Minneapolis, Minn. (O. H. Schmitt, Univ. of Minnesota, Minneapolis.)

20–22. Acoustical Soc. of America, 56th meeting, Chicago, Ill. (K. Kramer, 3839 Grand Ave., Western Springs, Ill.)

20–22. American College of Cardiology, New Orleans, La. (P. Reichert, Empire State Bldg., New York 1.)

20–22. International Symp. on Tuberculosis, Philadelphia, Pa. (Dr. J. Schwartz, Deborah Sanatorium & Hospital, 642 Winder Bldg., Philadelphia 7.)

20–23. European Confederation of Agriculture, Vienna, Austria. (M. H. Abegg, Confédération Européenne Agriculture, Brougg (Argovie), Switzerland.)

24–6. Plant Specialists, 4th Latin American conf., Santiago, Chile. (R. Cortazar, Departamento de Investigaciones Agrícolas, Ministerio de Agricultura, Casilla 4089, Santiago, Chile.)

27–29. Central Assoc. of Science and Mathematics Teachers, 58th annual, Indianapolis, Ind. (N. G. Sprague, Indianapolis Public Schools, 1644 Roosevelt Ave., Indianapolis 18.)
A new low in high vacuum gauging 2×10^{-12} mm Hg

Now you can read a vacuum system continuously through the entire range of 1×10^{-3} to 2×10^{-12} mm Hg on eight decades.

A new emission control circuit on the CEC GIC-100 gauge makes it possible to cover this broad range with amazing accuracy. With this new control you can vary emission from 25 microamperes to 20 milliamperes over three separate ranges.

Thus you get a greatly reduced emission current which makes for longer tube life, less ion pumping, and minimum X-ray effects at ultra low pressures.

Since you can degas either by resistance or by electron bombardment, it's possible to use any standard ionization tube with this gauge.

The accessories available include a one- or two-station thermocouple circuit to read from 1 to 1000 microns. There are provisions for a recorder to read both the thermocouple stations and the ionization tube output.

For more information on the GIC-100 and 17 other types in the line of CEC high-vacuum gauges charted below, write for Bulletin 9-1. This new 28-page brochure describes them all in detail.

The following 47 meetings are being held in conjunction with the AAAS annual meeting.

AAAS Committee on the Social Aspects of Science (C. D. Leake, Ohio State Univ. College of Medicine, Columbus, Ohio). 27 Dec.

AAAS Cooperative Committee on the Teaching of Science and Mathematics (J. W. Buchta, Univ. of Minnesota, Minneapolis, Minn.). 28 Dec.

American Assoc. of Scientific Workers (R. J. Rutman, 6331 Ros St., Philadelphia 44, Pa.).

American Geophysical Union (W. E. Smith, AGU, 1515 Massachusetts Ave., NW, Washington 5).

American Meteorological Soc. (K. Spengler, 3 Joy St., Boston, Mass.).

American Physiological Soc. (F. A. Hitchcock, Ohio State Univ., Columbus).

American Psychiatric Assoc. (L. J. West, Univ. of Oklahoma School of Medicine, Oklahoma City 4). 27–28 Dec.

American Soc. of Naturalists (J. Schultz, Inst. for Cancer Research, Philadelphia, Pa.).

American Soc. of Zoologists (G. Mo- ment, Dept. of Biology, Goucher College, Towson, Baltimore 4, Md.). 27–29 Dec.

Association of American Geographers, Middle Atlantic Div. (J. E. Guernsey,
Aloe-Narda Ultrasonic
Cleaning Equipment is
Fast / Low Cost / Efficient

The right generator plus the proper transducerized tank furnishes the ideal ultrasonic system for cleaning almost anything you can think of... Glassware, hot lab apparatus, medical instruments, electronic components, optical and technical mechanisms... and so on. Whatever the problem, these ultrasonic systems can be the answer to doing it faster, cheaper, and more efficiently.

Operation is simple and easy. Just plug into any 115V, 60 cycle outlet. Fill the tank. Add detergent. Flip the switch. Immediately, swift precision cleaning economies are yours. Excellent for other purposes too — like brightening, polishing, decontaminating, pickling, deburring, plating and degassing.

To determine the exact model you need, write for prices and more details, now.

aloe scientific DIVISION OF A. S. ALOE COMPANY
5655 Kingsbury • St. Louis 12, Missouri
Fully-Stocked Divisions Coast to Coast
Equipment

The information reported here is obtained from manufacturers and from other sources considered to be reliable. Science does not assume responsibility for the accuracy of the information. A coupon for use in making inquiries concerning the items listed appears on page 922.

Oven operates at temperatures up to 300°F. Chamber size is 3 by 36 by 48 in. Air is circulated by a 1500 ft³/min fan operated by a 1 hp three-phase motor. A 7-day timer and a circular chart recorder are provided. (Pereny Equipment Co., Dept. 412)

Cold-Junction Compensator is applicable to thermocouple devices. In use, the measuring thermocouple is connected to the input terminals of the compensator, the measuring device to the output terminals. When a selector switch is set for the type of thermocouple, a temperature-sensitive Wheatstone bridge in the compensator produces the necessary compensating voltage. Compensation accuracy is ±1°F in ambient levels from 32°F to 120°F. The instrument weighs 6 lb and measures 5⅜ by 8 by 5 9/16 in. (Technique Associates, Inc., Dept. 405)

Accelerometers are capable of continuous operation at temperatures from −100°F to +500°F with accuracy ±5 percent of reading. Bender-type piezoelectric elements are used with resonant frequencies as high as 30 kHz/sec and sensitivities up to 10 mV/g. Ranges covered are 0.01 to 1000 g and 3 to 10,000 cy/sec. (Gulton Industries Inc., Dept. 391)

Digital Barometer is a null-balancing electromechanical instrument that provides five-place readings of atmospheric pressure. The instrument operates on the weigh-beam principle in which transfer of barometer fluid from one column to another causes an unbalance moment that actuates a servo motor to restore equilibrium. Resolution is 1 in 30,000; repeatability, 0.002 in.-Hg. Outputs other than digital are available. (Dynematics Corporation, Dept. 400)

Pressure Transducer uses proving-ring principle and a four-arm strain-gage bridge. The transducer will handle most gases and also extremely corrosive liquids. Pressure ranges are 300 to 10,000 lb/in.² gage. Linearity is 0.25 percent; hysteresis 0.5 percent. Ambient temperature may be −65°F to 250°F. Natural mechanical frequency for the 300 lb/in.² range is 2500 cy/sec. (Taber Instrument Corp., Dept. 404)

Flow-Metering Systems provide rate and, totalizing indication and introduce pressure drops less than 2.5 lb/in.². Impeller-type transmitters are used to sense flow. The transmitters are available in stainless steel or aluminum alloy with temperature range from less than −350°F to greater than +300°F. Accuracy is ±1 percent over the range 3 to 600 gal/min. (Revere Corp. of America, Dept. 407)

Vacuum Furnace produces a uniform horizontal hot zone 6 in. in diameter by 12 in. long. Continuous operation to 2200°F is permissible. Vacuum is produced by a 4-in. pumping system with capacity of 720 ft³/min at 10⁻⁴ mm-Hg. The four standard loading and cooling arrangements available include provision for a continuous work-exchanger loading and cooling zone. (General Vacuum Corp., Dept. 408)

Mercury-Vapor Pump is a metal, water-cooled three-stage pump with a speed of 40 liter/sec of air in the 3 x 10⁻⁴ to 2 x 10⁻² mm-Hg range. Ultimate pressure of 10⁻⁴ mm-Hg can be attained with a cold trap at −63°C. Peak speed of 52 liter/sec occurs at 1 µ-Hg. (Consolidated Electrodynamics Corp., Dept. 413)

Joshua Stern
National Bureau of Standards

NOW

IMPROVED SAMPLING PROCEDURES WITH BAIRD-ATOMIC'S FLAME PHOTOMETER

Papers recently published are available on newly developed sampling techniques using the standard, B-A Flame Photometer. These papers are:

FCA-1 Procedures for Calcium Determinations
FKP-1 Sodium and Potassium Determinations from the same dilution.

More B-A Flame Photometers are in use than all other makes combined because:

- **Simplicity** of operation allows very rapid work — 80 or more determinations can be made in an hour.
- **Reproducibility** within ±½ of 1%, normal operation.
- **High Sensitivity** of the instrument permits detection of as little as 0.004 mEq/L.
- **10 Times Greater Accuracy** with B-A's Multilayer interference filters than with standard filters.

Send for the papers on the new techniques and procedures using B-A's Flame Photometer.

Baird-Atomic, Inc.
33 University Rd., Cambridge 38, Mass.