National Library Week

The AAAS joins with many national service, professional, and industrial organizations to support the second National Library Week, 12–18 April 1959. Organized under the joint sponsorship of the National Book Committee, Inc., and the American Library Association, its objectives are to encourage reading by Americans in all walks of life and to promote the use and support of libraries of all kinds—in the home, in communities, in schools, and in colleges.

The value of good library collections and facilities is recognized by all scholars and professional scientists. So far as the general public is concerned, a greatly increased awareness of the role of the school library in education is needed. High-school libraries are a fairly common adjunct of the public educational system, but many of them are not good, and all too often they are in the charge of an over-worked teacher instead of a trained librarian. A still smaller percentage have adequate collections of up-to-date science and mathematics books. A survey of the library holdings of approximately 1000 representative American high schools conducted by the AAAS during 1958 disclosed that only 5.1 percent of the books were devoted to science and mathematics. Considering the portion of the school curriculum devoted to science and mathematics, not less than 20 percent of a high-school library’s holdings should be in this area.

The importance of good library facilities is recognized in Title III of the National Defense Education Act of 1958 (Public Law 85-864, 85th Congress; 72 Stat. 1590) which makes funds available for “acquisition of . . . printed materials (other than textbooks) for use in providing education in science, mathematics, or modern foreign language, in public elementary or secondary schools, or both, . . .” Standards for the improvement of instruction in science, mathematics, and modern foreign languages formulated by the Council of Chief State School Officers emphasize “that the provision of better materials and equipment would result in more efficient learning and better adaptations of the educational programs to individual differences, both for the academically gifted and for those whose talents lie in other fields.”

The AAAS Traveling Science Library Program, supported by an annual grant from the National Science Foundation, is immediately concerned with the improvement of school libraries and the enlargement of their role in science education. The Traveling High School Science Library, received currently by 1309 senior high and private preparatory schools, is enriching science and mathematics courses and accelerated and honors programs for gifted students.

Plans are now being developed to initiate a Traveling Elementary Science Library Program in the fall of 1959 which will be made available to 1000 selected elementary and preparatory schools, particularly those that are giving special consideration to the gifted student. Science Service, in administering the Westinghouse Science Talent Search and the National Science Fairs, has determined that the majority of the winners developed their science interests before they entered junior high school.

The celebration of National Library Week is indeed appropriate, but achievement of lasting results in education will come about when every week is National Library Week.—HILARY DEASON, AAAS
Automatically synchronized objectives and condensers. See critical detail in clearer, sharper screen images. You get the right light for every magnification...automatically...because when you center an objective you simultaneously move its matched condenser into position. No tedious, time-wasting adjusting. Instant choice of screen magnifications from 20X to 3000X (at 12 feet).

Automatic electronic-fed arc lamp - No flicker! No flare! Provides uniformly intense light for brilliant, vivid screen images—60 minutes without interruption! Efficient heat-control system eliminates need for cumbersome water cells and color-distorting coolants...protects slides, ensures true color projection.

BAUSCH & LOMB

SpeedMatic MICRO-PROJECTOR

BAUSCH & LOMB OPTICAL CO.
64240 St. Paul Street, Rochester 2, N.Y.

☐ I'd like an obligation-free demonstration of the B&L SpeedMatic Micro-Projector at my convenience.
☐ Send me SpeedMatic Micro-Projector Catalog E-246.

NAME
TITLE

PROFESSIONAL ADDRESS

CITY ZONE STATE
Meetings
Seaweed Symposium

The third international seaweed symposium was held in Galway, Eire, on 13 to 19 Aug. 1958. It differed from its predecessors in that four formal lectures were delivered by invited speakers and in that an exhibition of commercial seaweed products was organized. Previous symposia were held in Edinburgh (in 1952) and in Trondheim (in 1955).

The participants, who came from 22 countries, numbered 207. The symposium was opened officially by Sean Lemass, Minister for Industry and Commerce. All scientific sessions were held at University College, Galway. In addition there were excursions into the surrounding country, either to collect algae or to visit the seaweed factories at Kilkeerin and Ballyconneely.

The symposium was organized under the auspices of a small international advisory committee through the Irish National Committee, but most of the work was done by a local committee in Galway with T. Dillon as chairman and G. O'hEocha as secretary. The program was divided into three sections: botany, chemistry, and applied industry, with a special session on intertidal ecology. Special lectures were given by R. D. Preston (England), on "Biochemical and biological aspects of some seaweeds"; by E. L. Hirst (Scotland), on "Seaweed mucilages"; and by H. M. Ulrich (Austria), on "Alginate esters and altered alginate fibers." A. Walford (United States) delivered a public lecture on "The sea as a potential source of food."

Some 20 communications of original work were made to the chemistry section. Wickberg (Sweden) reported the isolation of O-α-D-galactopyranosylglycerol, O-α-D-galactopyranosyl-(1-6)-O-β-D-galactopyranosyl(1-1)-α-D-glyceritol, mytilitol, and 2-L-amino-3-hydroxy-1-propanesulfonic acid and an N-substituted taurine from various red seaweeds. The presence of unidentified phenolic compounds in Ascophyllum nodosum has been detected by Haug and Larsen (Norway). These workers also determined that the seasonal variation of nicotinamide in some of the Fucaceae is between 15 and 35 micrograms per gram of dry matter, in autumn and spring, respectively. Turvey and Rees (Wales) described the major water-soluble polysaccharides of Porphyra as floridean starch and a galactan sulfate, containing galactose, methyl galactose, and anhydrogalactose. O'Donnell and Percival (Scotland) reviewed the polysaccharides in green seaweeds and described especially a heteroglycan sulfate from Spongamarpha which contained glucose, xylose, rhamnose, and glucuronic acid. The hydrolysis of the sulfate ester linkage in fucoidin, chondroitin sulfate, and keratosulfate by an esterase in Patella vulgata was reported by Lloyd and Lloyd (Wales). A preliminary description of the polysaccharide sulfate from Fucus serratus was given by Clancy, Walsh, O'Colla and Dillon (Eire). Young and Smith (Nova Scotia) reported analyses of the free amino acids, peptides, and proteins of Chondrus in which some peptides contained citrulline and ornithine and in which about 50 percent of the protein was present in an insoluble form, the distribution of amino acids being very similar to that of other algal proteins.

About ten papers on the utilization of marine algae were read. A critical appraisal of laminarin sulfate as a blood anticoagulant was given by Burt (Scotland); she stressed the fact that this ester is of lower potency and of much greater toxicity than heparin, on prolonged administration to rabbits and dogs. Seaweed meal can be fed to chickens, hens, and sheep without detrimental effects, according to Jensen (Norway), and with beneficial effects when it constitutes 5 to 7 percent of the basal ration, according to Höje and Sannan (Norway).
TRI-R Electronic THERMOMETER

THERMISTOR TYPE

- RAPID
- ACCURATE
- DIRECT READING
- REMOTE READING
- LOW COST
- PROBES
- RANGES
- STABLE

read temperature in seconds
± 1/2% of scale range
in °C. and °F.
leads to 1000 feet
priced from $72.00
interchangeable and special
human, animal, laboratory use
from —35 to +150°C.
mercury cell battery models
regulated line operated models

For complete catalog,
Write Dept.: S4

TRI-R INSTRUMENTS
144-13 JAMAICA AVE. • JAMAICA 35, N. Y.

Brinkmann
U.S.A.

The most complete line of
Exposure Meters for Photomicrography
and Microcinematography

Accurate Fast Convenient

BRINKMANN Exposure Meters can be applied to all phases
of microscopic technique at various magnifications and
different levels of illumination. Some models are pre-
calibrated for different film speed.

BRINKMANN INSTRUMENTS INC.
GREAT NECK, L. I., N. Y.
376-380 Great Neck Rd.
PHILADELPHIA, Pa.
3214 North Broad Street

10 APRIL 1959
A new LIQUID detergent

...gets laboratory glassware and utensils sparkling clean in seconds!

and... it's absolutely SAFE for hands and skin!

Now... a super-effective liquid detergent that cuts grease like a knife... eliminates time-and-energy-consuming scrubbing and scraping—yet is completely safe and gentle to even tender hands and skin. A convenient liquid detergent that's always ready to use in its reusable squeeze-bottle dispenser—never cakes up, like powdered soaps or detergents! A dependable liquid detergent that won't break down in the presence of acids or bases! A fast-acting liquid detergent that eliminates wiping and drying... because it leaves only a tissue-thin residue of water—so glassware dries by itself in 2 minutes, without a trace of film!

G 37700—AQUET—1 pint in polyethylene Dispenser bottle each 2.05, per doz. 22.15

The EMIL GREINER Co.
20-25 N. MOORE ST., DEPT. 245 N.Y. 13, N.Y.

The Beginnings of Embryonic Development

AAAS Symposium Volume No. 48 Published July 1957

Edited by Albert Tyler, California Institute of Technology
R. C. von Borstel, Oak Ridge National Laboratory
Charles B. Metz, The Florida State University

6 x 9 inches, 408 pages, 132 illustrations, references, subject and author index, clothbound

Price $8.75, AAAS members' prepaid order price $7.50

A symposium on "Formation and Early Development of the Embryo", held 27 December, 1955, at the Second Atlanta Meeting of the AAAS, served as the basis for this volume. Emphasis was placed on the problems of early development and of the initiation of development. The investigations presented in the various communications cover both descriptive and experimental work on the biological and chemical levels. Apart from their intrinsic interest and the measure of progress that they provide, the specific discoveries and analyses presented serve to exemplify various approaches toward the understanding of the manner in which sperm and egg contrive to produce a new individual.

British Agents: Bailey Bros. & Swinfen Ltd.,
Hyde House, West Central Street, London WC1, England

AAAS, 1515 Massachusetts Avenue, NW, Washington 5, D.C.

About 27 papers were read in the botany section. From experimental work Jacobs (United States) reported that the controlling factors in wall formation and regeneration in Caulerpa prolifera must be in the cytoplasm close to the cell wall, rather than in the streaming cytoplasm. Segi (Japan) discussed the commercial cultivation of Monostroma in Japan.

Boalch (England) described changes in the proportions of prostrate and erect systems in pure cultures of Ectocarpus confervoides, and changes in shape and size of cell, which resulted from changes in salinity, illumination, and temperature. The study throws some doubt on the reliability of current taxonomic criteria. Dixon (England) discussed confusion in the taxonomy of Pterocladia pinnata caused by morphological variation as a result of differing ecological factors. Müller-Stoll (Germany) reported on the ecology, internal anatomy, and biochemistry of Fucus vesiculosus in the western Baltic. In deeper waters this species grows to a length of 7 meters and lives 7 years or more. Powell (Scotland) discussed his proposal to reduce the 15 or more species of Fucus now listed to about five.

Baardseth (Norway) described a method of physode estimation and reported that the percentage of physode volume varied with the species and, in Ascophyllum, was related to salinity.

Haxo and Neushal (United States) have studied the growth and differentiation of young specimens of Macrocystis pyrifera and described an ingenious apparatus for growing and observing these plants at depths of 30 to 100 feet. This technique permits analysis of the effects of various environmental factors. Fogg (England) reviewed the technology of mass culture of microscopic marine algae but concluded that harvesting difficulties make such culture commercially uneconomic at present. Von Stosch (Germany) compared the leucosin of diatoms and chrysomonads with laminarin and adduced evidence for their close relationship.

Kanwisher (United States) described a new method of determining the photosynthetic and respiratory capacity of several intertidal algae. He reported that freezing and drying on the shore have similar effects in depressing respiration. Provasoli (United States) has observed the response of Ulva lactuca to various hormones added to bacteria-free cultures. His study suggests strongly that the level of auxin and gibberellin controls speed of growth and size of crop in the coastal zone.

Allen (United States) has induced several fresh-water, nitrogen-fixing species of blue-green algae to become adapted to marine conditions. Growth was somewhat retarded, but their ca-
Capacity to fix nitrogen under these conditions was studied.

Grenager (Norway) described a method of predicting the distribution of Laminaria digitata and Ascophyllum nodosum in unknown areas by study of charts only. A forecast was checked later by a field survey and found to deviate by only a few percent for each species.

The abstracts of most communications and of two of the formal lectures have been printed in a small volume of 92 pages, which may be purchased from Dr. C. O’H-Eocha, University College, Galway, Eire. No further printing of the proceedings is anticipated. The next symposium will be held in Paris in 1961, under the chairmanship of A. D. de Virville.

Constance I. MacFarlane
E. Gordon Young
Atlantic Regional Laboratory,
National Research Council,
Halifax, Nova Scotia

Youth Conference on the Atom

A national Youth Conference on the Atom, the first meeting of high-school science students and teachers for discussion of the peaceful uses of nuclear energy, will be held at the Claridge Hotel in Atlantic City, N.J., 30 April-1 May. The attendance of approximately 500 junior and senior high-school science students and teachers at the conference will be sponsored by 60 or more electric utility companies throughout the country. Organizations cooperating in the conference include the AAAS, Atomic Industrial Forum, Future Scientists of America Foundation, National Science Foundation, National Science Teachers Association, and Science Clubs of America.

John A. McCone, chairman of the Atomic Energy Commission, will deliver an address on 30 April. Other speakers will be Norman C. Hilberry, director of the Argonne National Laboratory; Charles E. Robbins, executive manager of the Atomic Industrial Forum, who will tell the young scientists about industrial uses of the atom; Cyril Comar, director of the Laboratory of Radiation Biology at Cornell University, who will describe the use of the atom in agriculture; and John Laughlin, chief of the division of physics at the Sloan-Kettering Institute for Cancer Research, who will speak on the uses of the atom in medicine.

Forecasts of the atom and the world of tomorrow will be presented by Francis K. McCune, vice president of the General Electric Company, and Charles H. Weaver, vice president of the Westinghouse Electric Corporation, who are in charge of atomic activities at their respective companies. Ben D. Wood, director of the Bureau of Collegiate Educa-
SOLVE YOUR DISPENSING PROBLEMS with the CORINTH Finger-Tip DISPENSER!

- Affixes to any shelf or flat surface
- Operates at touch of finger-tip
- Eliminates the hazards associated with pouring corrosive liquids
- Accurate . . . Sterile . . . No Metal Contact

USED IN LEADING LABORATORIES

L-9500—Complete with Pyrex Brand Glass Nozzle, Vial Shield and Tygon R-3603 Delivery Tubing

$18.50

*Patent Pending

WRITE TODAY FOR THE NEW PALO PLASTIC CATALOG PA-81

Palo Laboratory Supplies, Inc.
81 Reade Street • New York, N.Y.

MEDICAL MICROSCOPES

Most reasonably priced GUARANTEED Microscope on the market.

Made in West Germany

NEW DESIGN
EXCLUSIVE
SAFETY FEATURES
HIGH QUALITY OPTICS
GRADUATED
MECHANICAL STAGE

TEN YEAR GUARANTEE
$257.00
WITH CASE

Write for catalogue listing safety features

10% Discount on 5 or more. Models may be assorted to obtain this discount

TRANSPORTATION INCLUDED

THE GRAF-APSCO CO.
5868 BROADWAY
CHICAGO 40, ILL.

GLASS ABSORPTION CELLS made by KLETT

SCIENTIFIC APPARATUS

Klett Manufacturing Co.
179 East 87 Street, New York, New York

Full View, Table Model

CHROMATOGRAPHY DRYING OVEN

Fast, Uniform
Drying of
Paper Chromatograms

Accurate development
of four 18½" x 22½"
sheets simultaneously

Model CD-4 is a thermostatically controlled, insulated oven which quickly reaches temperatures up to 110° C. Achieves evacuation of solvent vapors with water or motor aspirator. Heating elements concealed in base are protected from combustible, solvent droplets. Heavy metal-reinforced safety glass door readily permits temperature readings and observation without repeated opening of door. Stainless steel oven chamber is corrosion-resistant.

Overall Dimensions: 27" wide; 35½" high; 14½" deep

UNCONDITIONAL 1 YEAR GUARANTEE

Write for Bulletin CD-S410

NEW BRUNSWICK SCIENTIFIC CO.
P. O. BOX 606 • NEW BRUNSWICK, N. J.

976
The plus is precision!

NEW analog multiplier-divider by Philbrick

This is Philbrick’s K5-M — which provides improved long term stability. Accuracy, including drift, is better than 0.1°v in all 4 quadrants.

FEATURES:
- Accepts 3 variable inputs \(e_1, e_2, e_3 \) and yields \(e_1 e_2 e_3 \)
- 3-digit decade provides adjustable scaling voltage
- Useful response even beyond 10 kcps
- Needs no auxiliary equipment to obtain products, ratios, squares, square roots, etc.
- Requirements: 115 vac filament power; 110ma at \(\pm 300 \text{vdc} \)
- Mounts on standard 7" rack panel

Here’s a new and higher degree of precision, speed, and flexibility at your fingertips for analog computation, correlation, precision modulation, control, many other applications.

For full information, write:

GEORGE A.
PHILBRICK
RESEARCHES, INC.
285 Columbus Ave., Boston 16, Mass.
THE ANALOG WAY IS THE MODEL WAY

Operational Research

The second International Conference on Operational Research, organized by the International Federation of Operational Research Societies, will be held in Aix-en-Provence, France, 5–10 September 1960. The program committee would welcome suggestions for papers (or groups of papers) to be presented at the conference. Suggestions should be sent to the Secretary of IFORS, 11 Park Lane, London W.1, England, before 1 May 1959, with a copy to the secretary of the Operational Research Society of the country of origin. Manuscripts will be required by 1 December 1959 in order that preprints can be made available before the conference.

The International Federation came into existence in January this year, having as its objects “the development of operational research as a unified science and its advancement in all nations of the world.” The first international conference on the subject was held at Oxford in 1957.

Prague Antibiotics Conference

A symposium on antibiotics with international participation will take place in Prague, Czechoslovakia, 17–23 May. The proceedings will be divided into three sections: (i) problems of the bio-synthesis of antibiotics, (ii) the scientific pathophysiological basis of antibiotic therapy, and (iii) the problems of fermentation technology and nonmedical use of antibiotics.

Further information will be furnished upon request by the secretary of the symposium, Dr. M. Hřeřanský, Antibiotics Research Institute, Roztoky near Prague, Czechoslovakia.

Forthcoming Events

May

10–15. Society of American Bacteriologists, St. Louis, Mo. (E. M. Foster, Univ. of Wisconsin, Madison 6.)
11–12. Practical Problems of Coordinating and Integrating All Services Related to the Treatment, Training and Management of the Mentally Retarded,
conf., Vineland, N.J. (J. D. Eadline, Training School, Vineland, N.J.)

17-20. American Inst. of Chemical Engineers, 40th natl., Kansas City, Mo. (F. J. Van Antwerpen, AICE, 25 W. 45 St., New York 36.)

17-21. American Ceramic Soc., 61st annual, Chicago, Ill. (C. S. Pearce, ACS, 4055 N. High St., Columbus 14, Ohio.)

17-21. Institute of Food Technologists, 19th annual, Philadelphia, Pa. (C. S. Lawrence, IFT, 176 W. Adams St., Chicago 3, Ill.)

17-22. Antibiotics, intern. symp., Prague, Czechoslovakia. (M. Heřmanský, Antibiotics Research Inst., Rotozky near Prague, Czechoslovakia.)

18-20. Instrumental Methods of Analysis, 5th natl. symp., Houston, Tex. (H. S. Kindler, Director of Technical and Educational Services, ISA, 313 Sixth Ave., Pittsburgh 22, Pa.)

19-23. American Assoc. of Mental Deficiency, Milwaukee, Wis. (N. A. Dayton, Mansfield State Training School & Hospital, Mansfield Depot, Conn.)

21-23. American Assoc. for the History of Medicine, 32nd annual, Cleveland, Ohio. (Miss E. H. Thomson, Yale Univ. School of Medicine, New Haven, Conn.)

21-27. Veterinary Cong., 16th intern., Madrid, Spain. (J. Jensen, General Secretary of Permanent Committee, Belstraat 168, Utrecht, Netherlands; or W. A. Hagan, Dean, Cornell Univ., New York State Veterinary College, Ithaca, N.Y.)

24-27. Chemical Inst. of Canada, 42nd annual conf., Halifax, Nova Scotia. (Chemical Inst. of Canada, 18 Rideau St., Ottawa 2, Ontario.)

24-29. Social Welfare, natl. conf. and annual forum, San Francisco, Calif. (National Conference on Social Welfare, 22 W. Gay St., Columbus 15, Ohio.)

25-27. American Inst. of Chemical of Canada, 42nd annual conf., Halifax, Nova Scotia. (Chemical Inst. of Canada, 18 Rideau St., Ottawa 2, Ontario, Canada.)

(See issue of 20 March for comprehensive list)
Volume of liquid delivered is precisely measured with a micrometer—down to 0.0001 ml.

Total capacity 0.25 ml.

Volume setting can be maintained for repeated deliveries of identical volumes.

Quickly converted from micro-syringe to micro-burette.

Teflon, glass, and stainless steel construction.

Write for Brochure SM

New UNIVERSAL PHOTOMETER

For Low Level Light Measurements

THE MODEL PH 200

- Luminous Sensitivity: >10^-10 Lumens
- Amplifier Stability: Better than 0.1% full scale after warmup
- Reliability: Signal circuitry involves only one vacuum tube
- Range: Density — 0 to 6
 Transmittance — 10^-4 to 1.0

The Model PH 200 Photomultiplier Photometer uses the latest circuit techniques to provide the most reliable and flexible photometer commercially available. The instrument is designed to operate with all types of photomultiplier or phototubes and includes an adjustable high voltage supply. An output jack is provided on the rear chassis for driving an oscilloscope or recorder.

Price $495.00 including detector and photomultiplier tube type 931A.

Write for complete technical information. Address Dept. 54.
Equipment

The information reported here is obtained from manufacturers and from other sources considered to be reliable, and it reflects the claims of the manufacturer or other source. Neither Science nor the writer assumes responsibility for the accuracy of the information. A coupon for use in making inquiries concerning the items listed appears on page 982.

- **Differential Transformer** with large diameter is designed for applications in which the core must be separated from the coil by a glass or other nonmagnetic tube. The transformer has a linear range of 1 in. in either direction from null position. Deviation from linearity is less than 1 percent over the full range. (Schaevitz Engineering, Dept. 725)

- **Digital Subtractor-Converter** accepts two digital input signals, subtracts one from the other digitally, and presents an analog output signal proportional to the difference. Input signals are accepted at pulse rates up to 250 kcy/sec in blocks occurring at 1/30 sec intervals. Each block may contain up to 4095 pulses. Output voltage is ±50 mv for ±1 count difference and up to ±10 v for ±200 count difference. Output accuracy is ±2 percent or 10 mv, whichever is greater. (Computer Equipment Corp., Dept. 727)

- **Potentiometer Checker** consists of a ten-turn master potentiometer mechanism for coupling the potentiometer under test, a recorder, drive mechanisms and trimming adjustments for zeroing and error, and a calibration source. The master-potentiometer output voltage is a linear function of test-potentiometer shaft rotation with accuracy ranging from 0.01 percent for the one-turn output shaft to 0.003 percent for the 15-turn output shaft. (Analog Controls, Inc., Dept. 734)

- **Amplifiers** for oscillograph recorders drift less than 0.5 mv equivalent input per hour and will operate from 115v ±5v power lines without additional regulation. Input impedance is 2 megohm. Frequency compensation for galvanometer characteristics is designed for plug in. Automatic signal overload protection prevents galvanometer burnout. (Epsco, Inc., Dept. 723)

- **Vacuum Pumping System** is a 3-in. system with a separate roughing line for initial evacuation of the bell jar. Pumping time to 10^-4 mm-Hg is 20 min. Ultimate pressure is 5 x 10^-6 mm-Hg. Ionization and thermocouple gages measure vacuum. (Bon-De Electronic Laboratories, Inc., Dept. 731)

- **Digital Recorder** is a self-balancing, null-type indicator recorder for full scale of 0 to 100 mv. Minimum printing cycle is 3 sec, and full-scale response time is 3 sec. Accuracy is ±0.5 percent. (Research Appliance Co., Dept. 729)

- **Power-Density Meter** measures power density of high-level microwave fields. The meter reads directly from 1 to 20 mw/cm^2 with accuracy of ±0.3 ±2 db. Three standard types cover the frequency ranges 2700 to 3300, 5200 to 5900, and 8500 to 9600 Mcy/sec. The meters are battery-operated and self-calibrating. Total weight is 6 lb, including batteries. (Sperry Microwave Electronics Co., Dept. 732)

- **Phase Meter** for the frequency range from 15 to 500 Mcy/sec consists of a phase-indicator unit and a time-delay unit. The former indicates when input signals are in phase or 180 deg out of phase. Minimum input signal is 1 v r.m.s. with panel meter or 20 µv with external receiver detector. Accuracy is ±0.05 deg or ±1 percent up to 200 Mcy/sec and ±2 percent at 500 Mcy/sec. (AD-YU Electronics Laboratory, Inc., Dept. 733)

Joshua Stern
National Bureau of Standards, Washington, D.C.
EXPERIMENT:
The analytical determination of proper balance between price and performance in lab glassware

Here's an experiment which you will be interested in trying. Though it pertains more to economy than to a physical state or condition, it does offer the sound analytical reasoning which you, as a scientist, must welcome.

The premise is this: laboratory glassware is an "expense" item in schools and colleges and by cutting this expense substantially every science instructor makes available to himself additional money with which to purchase other equipment for his laboratory.

This premise is based, first, on the fact that quality is maintained and, second, that the saving involved is substantial enough to warrant this time necessary to effect it.

Actually, this experiment demands little analytical determination to ascertain the possible savings involved. One glance at the comparative price chart listed below will show you the kind of savings to which we refer.

Remember . . . these prices are for Doerr Diamond D quality glassware . . . glassware which we are proud to emblazon with our Diamond D trade mark.

If you want facts to prove to school officials and school boards your contention that you can effect substantial savings on laboratory glassware, send for our booklet, "FACTS . . . About The Economics Of Laboratory Glassware". Write to: Doerr Glass Company, Dept. M, Vineland, N. J.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>BRAND A</th>
<th>BRAND B</th>
<th>DOERR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIPETTE (1 ml in 0.01) (Serological)</td>
<td>$1.31</td>
<td>$1.57</td>
<td>$0.90</td>
</tr>
<tr>
<td>PIPETTE (5 ml) (Volumetric)</td>
<td>1.19</td>
<td>1.36</td>
<td>0.79</td>
</tr>
<tr>
<td>PIPETTE (1 ml) (Ostwald)</td>
<td>1.14</td>
<td>1.28</td>
<td>0.81</td>
</tr>
<tr>
<td>CENTRIFUGE TUBE (15 ml)</td>
<td>1.28</td>
<td>1.28</td>
<td>0.69</td>
</tr>
<tr>
<td>FLASK (100 ml) (Glass Stoppered)</td>
<td>2.73</td>
<td>3.01</td>
<td>1.99</td>
</tr>
<tr>
<td>CYLINDER (100 ml) (Squibb)</td>
<td>2.71</td>
<td>2.94</td>
<td>1.48</td>
</tr>
<tr>
<td>SEPARATORY FUNNEL (250 ml)</td>
<td>6.22</td>
<td>6.56</td>
<td>5.21</td>
</tr>
</tbody>
</table>

NOTE: All Diamond D glassware is sold exclusively through laboratory supply dealers and cannot be purchased direct. We will gladly send you the address of the nearest lab supply house that carries the Diamond D lines.

DIAMOND "D" GLASSWARE
Quality Begins With Price And Ends With Performance
Letters

Presentation before Publication

It was a surprise to me to find that the editorial entitled "Behind the Times" [Science 129, 301 (1959)] suggested a journal policy of refusal to release any information to newspaper reporters prior to publication of an article. In many cases the researcher, or member of the research team, has already released such information in full by presentation at national conventions, regional meetings, or state-level programs. Large professional gatherings have established press rooms where abstracts or manuscripts originally submitted to the program committee have been made available to journalists.

To further temper journalistic extrapolation with scientific caution, interviews have been arranged between speakers and reporters.

The editorial writer noted "... that journals are not the only means of communication in the scientific world. Consequently, on occasion a reporter will come upon a piece of research that he finds newsworthy, but which ... has not yet appeared [in print]." The phrase on occasion seems too limited; often or frequently would seem to be better choices.

A previous editorial [Science 127, 1145 (1958)] reminded us that science did not exist until communication was established among scientists. Denial of scientific information to the wide audience covered by newspapers may possibly hamper the development of science. For surely scientists today do not wish to communicate exclusively with their colleagues. Hyperspecialization has made that undesirable. What scientists read in their professional literature may contain no more information than what they hear at their periodic assemblages. Since reporters are encouraged to attend many such gatherings, it seems churlish to deny them access to the contents of journals prior to publication.

The responsibility for an accurate report lies with the scientist. The responsibility for an accurate interpretation lies with the reporter, whether he reads a manuscript, hears a paper, or studies an article.

Dell Lebo

Child Guidance and Speech Correction Clinic, Jacksonville, Florida

The Word "Ecology"

It has been stated by a number of historians of science that the word ecology was coined by the German naturalist and Darwinian Ernst Heinrich Haeckel (1834–1919). Indeed, the Oxford English Dictionary attributes the first use of the word to Haeckel's The History of Creation (1875), quoting both from the preface of this work (in translation, "The great series of phenomena of comparative anatomy and ontogeny ... chorology and ecology") and from Haeckel's Evolution of Man (1879) ("All the various relations of animals and plants to one another and to the outer world, with which the Oekology of organisms has to do ... "). The Encyclopedia Britannica says in its article on "Ecology": "In 1869 Ernst Haeckel stated that the individual was a product of co-operation between the environment and organismal heredity. This relation was called 'ecology.'" Paul B. Sears in his book Charles Darwin: The Naturalist as a Cultural Force (Scribner's, 1950) writes (page 42): "Haeckel's grasp of the problems of living nature is suggested by the fact that he coined the word 'ecology,' now 'ecology,' to cover the study of the broad configurations which exist within and among communities of organisms," and in the same work (page 56) Sears pinches down the date of this coinage to the year 1866. George Sarton, in A History of Science (Harvard University Press, 1952), repeats this attribution to Haeckel.

Recently, in reading The Correspondence of Henry David Thoreau, edited by Walter Harding and Carl Bode (New York University Press, 1958), I came across a use of the word ecology antedating Haeckel's by several years. In a here-tofore unpublished letter to his cousin George Thatcher, of Bangor, Maine, dated 1 January 1858, Thoreau wrote: "Mr Hoar is still in Concord, attending to Botany, Ecology, &c with a view to make his future residence in foreign parts more truly profitable to him." Edward Hoar was Thoreau's Concord neighbor and his companion on several trips, including the famous journey to the Maine woods in 1857. The casualness with which the word ecology would certainly indicate that it was not of his own mintage and that his cousin would understand it. The inference, too, is that Hoar knew it also.

Thoreau was a wide reader in the literature of natural history. He had read The Voyage of the Beagle and quotes it in his Journal. We have no record that he had read Haeckel. In fact, in 1858 Haeckel was only 24 years old, probably then studying medicine, with his biological career still ahead of him.

So, who did coin the word ecology? And where did Thoreau and Hoar pick up the word? It would be interesting to know, for Thoreau was certainly an ecologist and possessed a fundamental understanding of the principles of ecology, though it did not attain the stature of a recognized science until long after his day.

Paul H. Oehler

Smithsonian Institution,
Washington, D.C.