Author’s Choice

Science has recently been the target of several pot shots from other members of the publishing world. The criticism started, so far as we know, when an alert science writer of the Washington Post and Times Herald discovered that “Strontium-90 in Man III,” the article on page 1249, was in the Science office but had not yet been published. Because the concentration of strontium-90 is a matter of general concern, because the authors had chosen to have their report published in Science instead of giving prior release to the newspapers, and because the interval between receipt of the article and its appearance was longer than the reporter thought justified, he concluded that Science was either negligently slow in bringing important information to the public or was willfully withholding that information.

Under the title “Strontium-90 in U. S. Children, the Report That the AEC is Withholding,” The Nation then went off in two directions. It censured the Atomic Energy Commission and Science for “sitting on” an article of vital public concern, and then argued that the data are so limited that the conclusions lack significance and do not give anything like a true picture of the strontium-90 situation. The New York Times then joined the attack with a summary of The Nation article.

The critics claim that the report should have been given to the general press instead of being sent to Science, a journal that The Nation describes as a “respected but highly technical publication of limited circulation.” (We accept this description, but with amusement point out that Science has twice the circulation of The Nation.)

The claim raises a question that merits clearer formulation than the critics have supplied: Under what circumstances should the traditional customs of scientific publication be followed, and under what circumstances is it preferable to give a scientific report to the public press prior to its appearance in a scientific journal? The research worker has a choice. If he presents his material in an open meeting or gives it directly to the press, newspapers can report it immediately. The material reaches the public quickly—if at all—but relatively unscreened and rarely in sufficient detail to enable other scientists to form their own judgments about the adequacy of the conclusions.

If the report is published in a scientific journal, it does not reach the public as quickly, but when it does, it has survived critical scientific review, has frequently been made clearer as a result of suggestions from the editor or referee, and is published in sufficient detail to enable scientific colleagues to appraise data and methods as well as conclusions.

Custom dictates that the choice be made by the scientist rather than by the institution that supported the work or the editor to whom the account of it is submitted. Both alternatives have their proper uses, but there is not yet agreement on the conditions under which each is preferable. Until agreement is reached on the criteria for each, we will honor the choice an author makes when he sends an article to Science. We will continue to have articles critically reviewed and will publish the accepted ones in sufficient detail to enable other scientists to gain more information than they can normally get from newspaper accounts. Note, however, that when an author wishes to reach the public more quickly, there is an alternative channel open to him.

We think it desirable that both scientists and journalists have a clear understanding of the nature of these options.—D.W.
When should they start science?

They already have, of course. Observant eyes, inquiring minds—their questions touch on science every day. And more and more, earlier and earlier, teachers are trying to channel and develop this interest. Proper equipment makes a world of difference. Here are some of the Bausch & Lomb instruments that make science easier to teach, easier for children to understand.

WRITE for informative Catalog E-152. Demonstration, too, on your request. Write Bausch & Lomb Optical Co., 64241 St. Paul St., Rochester 2, New York.
Kodak reports on:
how to prevent a pile of fish from catching fire... allaying fears of deviation
from reciprocity... electronics through joy

Defense from oxygen
A can of sardines provides excellent protein for a field hand’s lunch in the
cotton country and a livelihood for a Maine man who would rather work on
a herring seiner than a gas station. The applecart, however, is tipping a little.
The field hand’s wife can now often afford to slip a chicken sandwich into
the lunch pail.

While the herring seiners go looking for gourmets to eat their catch, other
fishermen are setting their seine for Brevoortia tyrannus, the fish the Pil-
grim saw the Indian drop into the hole with the corn kernels, the most abun-
dant of Atlantic coast fishes, ignored by cookbooks, the menhaden. To get
it into the field hand’s lunch pail, it is converted into chicken muscle tissue.

This complex process requires cook-
ing the menhaden at a temperature
below 180°F (which will coagulate and separate the protein but not de-
grade it); then squeezing, drying, and grinding the stuff, adding it to corn
and other agricultural and mineral products, and feeding the mixture
to chickens. The drying step is critical. If oxidation of the fish fat gets out of
hand, not only may the protein and vitamins be destroyed, but fire may
break out.

This we have set about to prevent. To assure ourselves of a good supply
of photographic developer, we long ago set up to make phenolic reducing
agents in large quantity. We made so much that we had to find other mar-
kets. The difference between a reduc-
ing agent and an antioxidant is a mere
technicality. One of our antioxidants,
butylated hydroxytoluene, has long been
accepted by competent and crit-
ical authorities as safe even for direct
human food, at the proper levels. As
Tenox BHT—Agricultural Grade, we
are now selling it to the fish meal
people. It saves them money. Their 40-
ton piles of fish scrap require less
costly shifting to keep them cool. A
week is reported to have been cut off
the curing time.

Even if you have no 40-ton piles of fish
in the sun, Eastman Chemical Products,
Inc., Kingsport, Tenn. (Subsidiary of East-
man Kodak Company) would love to talk
about you to howdecelerationon oxidation
in the grand scale. Incidentally, the closely
allied Gulf of Mexico menhaden, Brevoortia
patronus, poses less of a self-heating prob-
lem. We wonder why.

Millimicroseconds to months
When you let light fall on film, you are
running a photochemical reaction.
Bunsen and Roscoe, a pair who didn’t
flinch in the face of the obvious, for-
malized the observation that the
amount of product resulting from a
photochemical reaction must be pro-
portional to the amount of energy
used—intensity of illumination times
its duration.

Later other scientists in turn covered
themselves with glory by discovering
that for photographic exposure this
was not strictly true, and still others
won Ph.D.’s by explaining why not.
Intensity and duration slip the shackles
of reciprocity a little. Over the broad
spectrum of durations from millimi-
croseconds to months, a certain opti-
mum rate of feeding energy to a silver
halide emulsion is encountered. The
manufacturer can roll the optimum
somewhat one way or the other.

Calls for shifting it to favor the
effectiveness of very dim light come
from astronomers, among others. From
an observatory director’s viewpoint,
cutting hours off exposures is like hav-
ing more telescopes.

Business is brisker, though, on the
other end of the scale. To more and
more users of photography a hundred-
thousandth of a second sounds like a
terribly long time. Well-read types,
they fear the deviation from recipro-
city. To allay those fears, we offer them
something new to read, a free pamphlet
bearing the title “Kodak Films for
Short Exposure-Time Applications.”

It is obtainable from Eastman Kodak
Company, Special Sensitized Products Di-
vision, Rochester 4, N. Y.

TV—rugged and sophisticated
Loath to fight World War III in an ad
(though this may not be a bad place to
fight it, personal safety considered),
we can only generalize from the con-
cept that to place a living human eye
at the payoff end of an intricate and
talented optical device may be incon-
venient and unwise. Where the en-
vironment is too violent for the eye,
we have developed a knack for substit-
uting a television camera.

This calls for cameras more sophisti-
cated than those which read boxcar
numbers in remote corners of railroad
yards. We take pickup tubes (drinking
deep draughts of the knowl-
edge of their manufacturers, just as
they are welcome to milk us when it
comes to photography) and festoon
the tubes with electronic circuitry, op-
tical elegance, and precision-mechani-
cal musculature—all neatly woven to-
gether. The whole we put in small
packages. We can make the packages
do their duty gracefully under 15 g’s of
shock and 145 db of acoustic energy in
each octave to 20,000 cycles/sec for x
minutes at 200°F or y hours at −65°F
after z months of storage at −80°F.

How did we happen to get electroni-
cally involved? Well, the biggest part
of our business has always been ways
and means of presenting an image to
the eye. Electronics engineers we have
in goodly numbers on such projects as
machines that take a very quick look
at a Kodacolor negative and instantly
reach a complicated decision on how to
vary some colored light beams to bring
the greatest joy to the lady calling for
her Kodacolor Prints. With what such
machines cost, they have to work
when you turn them on. Like virtue,
reliability becomes its own reward.
This viewpoint our electronics engi-
neers must quickly acquire.

Another corps of Kodak electronic
engineers bring to TV-systems de-
velopment the experience of packaging
radio transmitters and receivers to
work inside artillery shells. This, too,
we got into from catering to the pub-
lic’s photographic desires. The armed
forces had figured that an outfit cap-
able of flooding the world with ac-
curately timed photographic shutters
could do as well with artillery fuzes.
Later, when fuzes came to be operated
by radio echoes instead of clockwork,
what was more natural than that we
make that kind?

If you have some business to discuss
about rugged and sophisticated electronics,
get in touch with Eastman Kodak Com-
pany, Apparatus and Optical Division,
Rochester 4, N. Y.

This is another advertisement where Eastman Kodak Company
probes at random for mutual interests and occasionally a little
revenue from those whose work has something to do with science

8 MAY 1999
Meetings

Facies Model Conference

A discussion concerning sedimentary rocks was held at the Illinois State Geological Survey on 4–5 Nov. 1958, for the purpose of pooling the knowledge and experience of the group concerning three topics: the existence and number of sedimentary associations; the possibility of establishing a model for each association that would emphasize the areal distribution of lithologic units within it; and the exploration of the spatial and sequential relations between the associations.

The participants included Albert V. Carozzi (University of Illinois); Francis J. Pettijohn (Johns Hopkins University); E. P. Potter (Illinois State Geological Survey); John Rodgers (Yale University); W. W. Rubey (U.S. Geological Survey); Raymond Siever (Harvard University); L. L. Sloss (Northwestern University); and E. L. Winterer (University of California, Los Angeles). Under the direction of a chairman, informal discussion was substituted for formal papers.

The first action of the group was to agree that recurring patterns of sedimentation give rise to a relatively small number of fundamental sedimentary associations rather than to an indefinite number of independent and unique patterns in space and time. This concept makes possible the broad application of a relatively small number of general principles to the identification and interpretation of the majority of sedimentary deposits.

The sedimentary association was defined as a collection of commonly associated sedimentary attributes. In the multidimensional space defined by the basic sedimentary attributes, a sedimentary association is simply a clustering of points. Subsequent discussion of the various sedimentary associations repeatedly emphasized the fact that no single variable or attribute is sufficient to define one of these clusters or associations, just as no single characteristic can be used by anthropologists to define a race or by psychologists to define personality. Although gradations between associations were recognized and emphasized at the very beginning, it was decided not to consider them until the basic associations had been defined.

The factors most often mentioned in the definition of a sedimentary association were gross geometry (thickness and areal extent); continuity and shape of lithologic units; rock types (maturity of the clastics and character of carbonates), sedimentary structures, and fauna (types and abundances). Five major associations were outlined.

Before discussion of facies models was initiated, the relations between the various associations were discussed briefly but were not exhaustively explored. Discussion made it immediately apparent, however, that not all transitions between the associations are possible and that some occur much more frequently than others.

A facies model was defined as the distribution pattern or arrangement of lithologic units within any given association. In the early stages of geological exploration, the function of the model is to improve prediction of the distribution of lithologic types. Successful prediction, it was agreed, is the measure by which a geologist’s understanding of a sedimentary association should be judged. Facies models were discussed under sandstone and carbonate subtypes.

Although general agreement was not reached concerning what should be included in a facies model, both basin architecture and the relationship of transport direction to depositional strike played prominent roles in the discussion. The mechanism of quartz and carbonate...
A method for determining adrenalin and noradrenalin in aqueous solution has been developed which depends on differential fluorescence. This technique results in corresponding fluorescent substances. This technique allows for adrenalin much more independent of the noradrenalin values than obtained by previous methods, and vice versa, and has high specificity and sensitivity.

Ref: Fluorometric Determination of Adrenalin and Noradrenalin in Aqueous Solution
SIDNEY ROSTON, Anal. Chem. Vol. 30, Pg. 1363

FARRAND OPTICAL CO., INC.
Bronx Boulevard and East 238th Street, New York 70, N. Y.

NEW, SIMPLIFIED ELECTRIC KYMOGRAPH

440 ELECTRIC KYMOGRAPH This compact instrument is ideal for general student use, providing ease of operation and maintenance. It contains many of the fine features found in the more complex models, yet is available at a more moderate cost. An electronically controlled variable speed motor and gear shift makes possible an infinite number of speeds from 426 cm./min. to 5 cm./min. The steel base measures 6" x 7½" x 5" high and has baked enamel finish. The standard aluminum drum is 6" high by 50 cm. circumference. The unit is furnished complete, ready for use, with engraved aluminum control panel, nine-foot cord, pilot light and switch.

$80.00—f.o.b. Dover, Mass.

441 ELECTRIC KYMOGRAPH LOW SPEED Identical to 440 except that all speeds are reduced by a factor of 10. (High speed 42 cm./min., low speed 0.5 cm./min.) Special models to meet other speed requirements can be made available at the same cost as the 441.

$85.00—f.o.b. Dover, Mass.

440-407 SWINGING ARM INSTRUMENT STAND An accessory arm fastening to the top of 440 and 441 Kymographs.

$10.00—f.o.b. Dover, Mass.

New Catalog available on request

FARRAND\nPhotoelectric\nFluorometer

The Farrand Photoelectric Fluorometer assures precise performance in fluorometric assay.

The instrument is designed to render linear response and stability over a wide range of sensitivities for measurements of extremely low concentrations in micro or macro volumes.

Used by leading scientists throughout the world.

Bulletin No. 803E, with list of users, sent upon request.

NEW, SIMPLIFIED ELECTRIC KYMOGRAPH

440 ELECTRIC KYMOGRAPH This compact instrument is ideal for general student use, providing ease of operation and maintenance. It contains many of the fine features found in the more complex models, yet is available at a more moderate cost. An electronically controlled variable speed motor and gear shift makes possible an infinite number of speeds from 426 cm./min. to 5 cm./min. The steel base measures 6" x 7½" x 5" high and has baked enamel finish. The standard aluminum drum is 6" high by 50 cm. circumference. The unit is furnished complete, ready for use, with engraved aluminum control panel, nine-foot cord, pilot light and switch.

$80.00—f.o.b. Dover, Mass.

441 ELECTRIC KYMOGRAPH LOW SPEED Identical to 440 except that all speeds are reduced by a factor of 10. (High speed 42 cm./min., low speed 0.5 cm./min.) Special models to meet other speed requirements can be made available at the same cost as the 441.

$85.00—f.o.b. Dover, Mass.

440-407 SWINGING ARM INSTRUMENT STAND An accessory arm fastening to the top of 440 and 441 Kymographs.

$10.00—f.o.b. Dover, Mass.

New Catalog available on request
Ferrocene
(Dicyclopentadienyiron) . . . An unusual compound with interesting properties.

SPECIFICATIONS

Appearance and Form: Orange, Crystalline solid with camphor-like odor
Melting Point: 173° - 174° C.
Solubility: Insoluble in water, slightly soluble in benzene, ethanol, ether and petroleum ether.

Ferrocene (MC&B 8758) is the parent compound for a novel group of organic metallic compounds. It displays stability and other properties of aromatic compounds. Some of the reactions it undergoes are also typically aromatic. Although not commercially used, it shows significant anti-knock properties when added to motor fuels. Available from MC&B and MC&B Distributors at $17.50/10g.

Matheson Coleman & Bell
Division of The Matheson Company, Inc.
Norwood (Cincinnati), Ohio; East Rutherford, New Jersey

VENOMS
AAAS Symposium Volume No. 44
6" x 9", 480 pp., 113 illus., index, cloth, Dec. 1956
Price $9.50, AAAS Members' cash order price $8.25

First International Conference on Venoms, with 95 contributors from 18 countries. Comprehensive coverage of all aspects of the problem.

This book covers poisonous fishes and marine organisms, many species of venomous snakes, the Gila monster, toads, scorpions, spiders, caterpillars, wasps and other venom-bearing insects; hyaluronidase-like substances and other spreading factors in venoms; various chemical components of venoms, coagulant and anti-coagulant factors, antigenic principles; various experimental and suggested clinical uses of venoms; clinical considerations: mortality rates, treatment of many kinds of envenomation; new developments in serotherapy and types of supplementary medication; dangers of refrigeration for treatment.

Of special interest to: Physicians, pharmacologists, chemists, and zoologists.

AAAS
1515 Mass. Ave., NW, Washington 5, D.C.

Forthcoming Events

June
5-7. American Gastroenterological Assoc., and American Gastroscopic Soc., annual, Atlantic City, N.J. (H. M. Pollard, University Hospital, Ann Arbor, Mich.)
6. American Acad. of Tuberculosis Physicians, Atlantic City, N.J. (O. S. Levin, P.O. Box 7011, Denver 6, Colo.)
6. International Cardiovascular Soc. (North American Chapter), Atlantic City, N.J. (P. T. DeCamp, 3503 Prytania St., New Orleans, La.)
6-7. American Diabetes Assoc., Atlantic City, N.J. (E. Paul Sheridan, 1 E. 45 St., New York 17.)
6-20. and 27. Recent Advances in Medical Technology, symp., Staten Island, N.Y. (N. Colosi, Wagner College, Staten Island, N.Y.)
NEW KONTES DUALL TISSUE GRINDER

"... grinds intestinal tissue, liver, brain, skin and heart 10 to 15 times faster". *

"... grinds skeletal muscle—no conventional grinder does this". *

"... grinds large quantities of muscle tissue in half the time". *

* Reports from laboratories that have tested the new Duall Tissue Grinder prove its superiority!

It has two separate grinding areas. Grinding is first done in the conical section. Here, clearance can vary depending on the relative positioning of pestle and tube. This permits adjustment for size and toughness of sample. Final grinding occurs when this clearance is reduced and material is forced past the cylindrical area for fine homogenization. Grinding efficiency is thereby improved, grinding time reduced and versatility achieved. The Duall works when others won't!

Order now for immediate delivery! K-8545 Tissue Grinder, Duall

Size: B C D E

Capacity, ml
(pastele inserted) 5 10 30 50
Each 8.00 8.00 11.20 14.15

peesles and tubes are precise, rugged and interchangeable. Pesteled rods are extra large diameter for added strength. Tubes have convenient pouring lips.

KONTES GLASS COMPANY

Vineland, New Jersey
First Choice For Quality Technical Glassware
Midwest Distributor: Research Apparatus, Inc., Wauconda, Illinois

8-9. Isotope Effects in Chemistry and Biology, conf., Lemont, Ill. (Miss B. Litt, Isotope Effects Conference, Argonne Natl. Lab., P.O. Box 299, Lemont.)

8-12. American Medical Assoc., Atlantic City, N.J. (F. J. L. Blasingame, 535 N. Dearborn St., Chicago 10, Ill.)

8-12. Association for Research in Ophthalmology, Inc., Atlantic City, N.J. (L. V. Johnson, 10515 Carnegie Ave., Cleveland 6, Ohio.)

11-14. American Electroencephalographic Soc., Atlantic City, N.J. (J. K. Merlis, University Hospital, Baltimore 1, Md.)

(See issue of 17 April for comprehensive list)

For unparalleled versatility in MICROSCOPY

The Wild M20 microscope is without a peer in the realm of microscopy. This superb example of Swiss craftsmanship and precise optics provides almost unbelievable versatility for both research and scientific exploration.

Available with sextuple nosepiece, built-in 20-Watt illumination source, beam-splitting phototube for binocular focusing during photomicrography...as well as a full range of custom attachments for all observation methods...the Wild M20 is unmatched as a General Purpose or Research Microscope.

Attachments include the Cinetube (shown above), Camera II, Universal Lamp, Episcopic Equipment and Phase Contrast. The Wild Cinetube, designed for use with any 16mm movie camera having 50mm or 75mm focal lengths, permits critical focusing on the specimen while actually exposing film. It contains two, built-in, beam-splitter together with a photoelectric cell for exposure determination (with a galvanometer) and an internal projection tube for tilting or designating pertinent footage.

Your consideration of the Wild M20 will prove most rewarding. Write for Booklet M-20 today.

*The FIRST name in Surveying Instruments, Photogrammetric Equipment and Microscopes

WILDS

Full Factory Services

Main at Covert Street • Port Washington, New York
PORT WASHINGTON 7-4849

In Canada 39 of Canada Ltd., 157 Maclean St., Ottawa, Ontario
Letters

Women Scientists

The editorial “Science for the misses” [Science 129, 749 (1959)] leads me to believe that your readers will be interested in some data which I have assembled (with the help of Barbara Drew Atwood). Graduates of seven women’s colleges who are included in American Men of Science were counted, and the numbers were expressed as percentages of total living graduates of the respective colleges. The results follow (the first percentage is for the physical sciences; the second, for the biological): Mt. Holyoke, 0.46, 0.75; Bryn Mawr, 0.48, 0.57; Goucher, 0.40, 0.53; Vassar, 0.34, 0.32; Wellesley, 0.24, 0.24; Smith, 0.14, 0.25; and Radcliffe, 0.14, 0.13. The total is 532/87,012, or 0.61 percent.

Less than 1 percent of the 87,012 alumnae who were living in 1956 are in American Men of Science. Is this an indication of lack of opportunity for women scientists, of less innate scientific ability in women, or of women’s greater interest in home, children, and cultural activities other than scientific?

I believe that both men and women can be grouped into three categories: (i) those who must be scientists at any cost; (ii) those who are not interested and who would never be scientists; (iii) a group intermediate in size—those who, under the stimulus of economic necessity, prefer science to any other field. Most men in both categories (i) and (iii) become scientists. Women in group (i) persist in their study, but most women in group (iii) work as assistants, and so on, until marriage, children, or economic improvement release them.

I sometimes wonder, after many years of teaching college science, if it is wise to urge or to tempt persons, men or women, in group (iii) to become scientists. To give all possible aid and encouragement to those in group (i) might, in the long run, accomplish more.

Anna R. Whiting
University of Pennsylvania, Philadelphia

Supercooled or Subcooled?

Brahm’s article, “How does a raindrop grow?” [Science 129, 123 (1959)], is an excellent survey of our knowledge on this subject. I would, however, like to raise a question about the use of the word subcooled to indicate cooling of water below 0°C. To the cloud physicist and other scientists, subcooled and supercooled are generally regarded as interchangeable. It seems, however, a little unwise and completely unnecessary for scientists to use two words, which, it would seem from their structure, ought to have opposite meanings, to indicate
the same thing. The prefix sub ordinarily is accepted as meaning "less than," and super, as meaning "more than" (for example, subhuman and superhuman). Inasmuch as the word being modified by the prefix is cooled and not temperature, it appears that the word supercooled is preferable to subcooled for indicating excessive cooling.

In reaching this conclusion I examined two standard sources [Webster's New Collegiate Dictionary (Merriam-Webster, 1958) and the U.S. Weather Bureau Weather Glossary (1945)]. Both listed supercooled ("to cool below the freezing point without solidification"); neither listed subcooled.

In view of the above considerations and in view of the fact that so many scientific articles are now read by non-scientists and by foreign scientists, I would like to suggest that serious consideration be given to avoiding the ambiguity that might arise from use of the word subcooled (and, similarly, undercooled) in scientific writing.

HERBERT S. APPLEMAN

Air Weather Service,
Scott Air Force Base, Illinois

The practice, in meteorology, of using interchangeably the words subcooled and supercooled (and also undercooled) when referring to liquid water which has been cooled to temperatures colder than 0°C is unfortunate indeed. To this extent I agree heartily with Appleman. However, I cannot agree that it would be preferable to restrict ourselves to the term supercooled. My reason for preferring subcooled and undercooled is etymological. The point of reference which is implied in the use of all such words (for example, superheated, supersaturated, subsaturated) is that of the equilibrium condition. In this context the prefix sub denotes under, below, beneath, whereas super denotes over, above; therefore it seems preferable to use the terms subcooled and superheated when referring to a phase which has been cooled below or heated above its equilibrium temperature. On etymological grounds the term undercooled is even more desirable than subcooled because it is usually regarded as undesirable to mix words of Latin-Greek and Anglo-Saxon roots.

I consider it unfortunate that most desk-size dictionaries list supercooled but not subcooled. However, I have learned from one of the compilers that the 1959 edition of the Weather Glossary will cite subcooled as preferable to supercooled. I also find many other scientists who feel that it is desirable to make this change in nomenclature [for example, see Johnson, Physical Meteorology, p. 240; Mac-Donald, Advances in Geophysics, p. 245].

Roscov R. Brahaim, Jr.
Department of Meteorology,
University of Chicago

Determines Weight, Size & Shape of: large molecules, polymers, and biological materials

NEW ABSOLUTE

Light-Scattering PHOTOMETER

A remarkably sensitive, accurate instrument for light-scattering studies of compounds with high molecular weight—for particle-size determinations in the micron and submicron range—and for recording haze and turbidity in moving streams of liquids.

Specific applications of the instrument include the following:

a. Measurement of droplet sizes of aerosols.
c. Radiation effects on nucleic acid, proteins, and other biological materials.
d. Measurement of minute imperfections in glass and plastic.
e. Measures contamination of fuels and hydraulic fluids.
f. Measures atmospheric impurities for control purposes.
g. Checks turbidity of wastes for sewage disposal plants.
h. Measures haze in beer and wine.
i. Measures transmittance of highly opaque materials such as dye.

Anmico has just published a new bulletin with complete technical and ordering data for the Light-Scattering Photometer illustrated above. Send for a copy, furnished without charge.

Bulletin 2295-B

AMERICAN INSTRUMENT CO., INC.
8030 Georgia Avenue, Silver Spring, Maryland

8 MAY 1959

1297
FLAME PHOTOMETER for determination of sodium and potassium in biological fluids is direct-reading in milliequivalents per liter. As little as 0.05 ml of serum diluted 1:200 is required for determination of both elements and for check runs. Reproducibility within ± 0.5 percent is claimed. (Baird-Atomic, Inc., Dept. 789)

PERMANENT MAGNET features variable gap from 0 to 4.5 in., continuously variable magnetic field strength for any chosen gap, and interchangeable pole faces. Field strengths variable over a 20-to-1 ratio are obtained by means of magnetic shunt rings. The use of oriented ceramic magnet material is said to provide negligible hysteresis. Typical unshunted fields are 3000 gauss at 1-cm separation of pole faces 5-cm in diameter and 1200 gauss at 2-cm separation of pole faces 10-cm in diameter. (Laboratory for Science, Dept. 801)

LINE PRINTER will edit and print out data from a computer or magnetic tape at rates up to 1000 lines per minute. The system consists of a drum printer and a transistorized control unit housing a magnetic-core buffer and plugboard editing controls. Control over format includes line spacing, skipping, and other paper movements. Vocabulary consists of 51 solid-face characters. Printing density is 10 characters per inch. (Burroughs Corp., Dept. 803)

ULTRASONIC DELAY LINE provides 900 μsec delay with average maximum secondary level more than 70 db below the main delay. Bandwidth to the 3-db points is 22 Mcy/sec. Insertion loss into 50 ohm is 55 db with a capacitance of 60 pf at input and output. The unit is 14.5 in. in diameter and 1 in. long. (Arenberg Ultrasonic Laboratory, Inc., Dept. 800)

MICROVOLT-AMMETER measures voltage from 1 μv to 1 v full scale and current 1 ma to 0.1 na full scale. In use as a d-c amplifier, gains of 10 to 102 are provided. Zero stability is within 0.1 μv/day or 2 x 10-11 amp/day. Zero suppression up to 100 times full scale is provided. Short-term noise is 0.006 μv r.m.s. (Keithley Instruments, Inc., Dept. 788)

X-RAY SPECTROGRAPH is a portable instrument designed for field use. The equipment consists of two units. The detector unit containing source, detector, and ratemeter weighs approximately 18 lb. The power supply and electronic unit weighs approximately 48 lb. Approximately 200 w of 115 or 230 v a-c power are required for operation. Voltage and current regulators hold fluctuations within ± 1 percent for line variations of ± 10 percent. When it is used with a standard lithium fluoride crystal, the instrument covers the atomic scale from titanium to tin in the K series and from lanthanum to uranium in the L series. Element settings are made by moving a lever on a scale graduated to indicate elements and angular degrees. (Philips Electronics Inc., Dept. 806)

TUBE FURNACE produces temperature of 5000°F from room temperature in approximately 2 hours with maximum power input. Heating elements are carbon-resistor tubes. Six sizes, with internal heated chamber dimensions 1 by 12 in. to 5 by 48 in., are available. A saturable-reactor control system provides temperature control. (Hevi-Duty Electric Co., Dept. 805)

JOSHUA STERN
National Bureau of Standards,
Washington, D.C.
NOW!
AUTOMATIC Spectrophotometric and Electrometric Titrations with the

NEW
SARGENT-MALMSTADT AUTOMATIC SPECTRO-ELECTRO TITRATOR

Designed and manufactured by
E. H. SARGENT & CO.
Patents Pending

S-29700 Spectro-Electrometric Titration Apparatus—Model SE, SARGENT-MALMSTADT $690.00

For SPECTROPHOTOMETRIC TITRATIONS
Provides direct automation of most titrations now being performed which inherently or in conjunction with an indicator provide a spectrophotometric end point. These include acid-base, oxidation-reduction, complex formation and some precipitation reactions, indicators being available for most of the titrations currently performed by manual methods.

For ELECTROMETRIC TITRATIONS
Provides facilities to perform automatic derivative potentiometric titrations as performed by the S-29690 SARGENT-MALMSTADT automatic potentiometric titrator. Provision is made for the convenient connection of simple circuits for constant current potentiometric, "polarized electrode" and similar titrations.

For complete information contact your nearest Sargent Division or write: Dept. SE, Chicago, Illinois
Letters

Teaching and Research

Impressed by what Caplow and McGee bring out in their book The Academic Market Place [see Science 129, 357 (1959)], Victor G. Fourman de- protests the emphasis on teaching ability and the concomitant stress on publication in the academic evaluation of college professors. With this aspect of Fourman’s argument I most heartily agree. Unless he be frankly engaged as a research professor, no member of a college or university faculty should be advanced on the basis of publications alone.

However, in all the literature I have seen on this troublesome subject there is little or no mention of what seems to me the really critical thing in the whole question of teaching versus research—the one valid reason why department heads, deans, and presidents may be justified in demanding that a faculty man publish. Unless a college teacher is actively engaged in grappling with the unknown somewhere on the forefront of knowledge, he will not bring into the classroom the point of view, the frame of mind, the mode of attack, the general air of the investigator, and these qualities are just what is essential if a teacher is to show, in the presence of the student, by various forms of example, how to go about dealing with the problems in his subject.

These remarks are directed mainly at the problem of college teaching—teaching in the undergraduate world. Graduate work deserving of the name is concerned with educating the student in the ways of original investigation, and to put a noninvestigator in charge of such work is indeed asking the blind to lead the blind. But even here the investigator should be a good teacher, not necessarily in the way that his colleagues in the undergraduate field are good teachers—and in fact there is often a difference—but a good teacher nevertheless.

Now it is publication that is nearly always emphasized in this picture and, unfortunately, not always research; this is one vice of which Fourman justly complains. Quality of publication should of course take first place in any individual evaluation, for the prime value of publication itself, in this context, is the evidence it affords that the author is really an investigator. Over and above all the cant and hypocrisy that have, regrettably, invested much discussion of the matter, the valid case is after all rather simple: A man can hardly go very far in sound research without finding something new, and when he does he owes it to his fellow scholars to make known the results of his work.

And there is also the negative side of the picture. If a teacher does no more than read and absorb the literature on his subject (this he must do as minimal preparation) it is highly likely that in the course of a few years he will go stale in his own thinking.

And finally, all this must probably be qualified by the truism that in a broad field like college teaching all kinds of genius are needed. Many years of association with many kinds of teachers have brought me to realize that there probably are some people who can stimulate students in certain desirable ways without doing any kind of research. But for the reasons given above, in view of the essential fact that the main thing college can do for a student is to show him how to learn and how to think, such teachers should be the exception and not the rule. Men and women who can do a good job of both teaching and research are probably not as rare as many would have us believe.

EDMUND M. SPIEKER
Department of Geology,
Ohio State University, Columbus

Department of Science

I should like to express my strong approval of the article on “Government sponsorship of scientific research” by L. V. Berkner [Science 129, 817 (1959)].

Like many members of the scientific community I have had grave doubts about the wisdom of setting up a federal department of science headed by an officer of cabinet rank. Increasingly, however, I have become convinced that such a department is practically a necessity, if science is to play the role that it must play in any vigorous society today. Berkner’s article provides the most powerful argument that I have seen in favor of such action, and to me the argument seems practically unanswerable.

As regards the scope of such a department I should go along with Berkner’s argument almost entirely except that I should like to see the National Science Foundation included in the proposed department. It is true that its inclusion would modify the structure, and expand the responsibilities, of the department, as envisaged by Berkner. I believe, on the other hand, that the National Science Foundation would probably flourish more vigorously and obtain more adequate support if it were a part of a federal department of science. The foundation has hitherto been almost a stepchild of the government. Its functions are of enormous importance; it should be the government agency with prime responsibility for the promotion of fundamental scientific research in this coun-