One of the steps in the courtship of a pair of breeding newts (Taricha rivularis). After a period during which he clasps the female firmly from above, the male moves a short distance away, attaches a packet of sperm (spermatophore) to a pebble and then assumes a position in front of and at right angles to the female. In following him the female is led to the spermatophore, which adheres to and is then drawn into the female cloaca, where the eggs are fertilized as they descend from the oviducts. See page 1735.
Why IEC is the logical source

TEACHERS' CHOICE

International's Micro Model uniquely combines high efficiency with low cost for micro and semi-micro analyses. It's the preferred tool for teaching centrifuging techniques in many colleges, universities and scientific laboratories.

FASTER MICRO-TESTING

International's Model MB is first choice for implementing the micro-capillary method of blood cell volume testing. With this "Quiet Test" centrifuge, samples spun at 11,500 RPM, are ready for accurate reading in 3 or 4 minutes.

BENCH SIZE LEADER

International's Clinical Model has long been recognized as the most versatile centrifuge in the bench-size class. It swings more than 25 accessory combinations at speeds up to 6700 RPM.

ROUTINE FAVORITE

International's Model CM is a versatile performer in numerous hospital, educational and industrial laboratories. Twenty-three interchangeable heads, more than 50 accessory combinations and speeds up to 4500 RPM cover most everyday needs.
YOU'RE SURE OF SATISFACTION
WHEN YOU CHOOSE INTERNATIONAL!

MOST VERSATILE

International's Model UV

The one model that meets general-purpose laboratory needs. No other centrifuge in the world today offers aparable combination of tern design, rugged endurability, wide-range ability, most-wanted ures... at such a rate price.

EXPLOSION-PROOF

International's Model EXD,

use in Class I, Group D hazardous locations, is the y explosion-proof entrifuge listed by lerwriters' Laboratories the Canadian Standards ociation. It combines e capacity, high-speed xceptional durability.

HIGH SPEED REFRIGERATED

International's Model HR-1

e centrifuge of choice h high-speed angle ration at forces up to 00 × G and controlled peratures between 0° C and +10° C. Firchangeable heads or a capacity range en 42 ml and 1500 ml.

International's Model PR-2
gives positive temperature control within 1° C to blood fractionations and similar separations between -20° C and +10° C. Twenty-eight interchangeable heads for capacities between 7ml and 4 liters provide versatility unmatched in the refrigerated entrifuge class.

All eight laboratory centrifuges displayed here bear the E trademark... the International symbol of optimum value. No other single manufacturer offers all eight. Yet, these trusted friends of thousands of laboratory directors and technicians are only the highlights of the world's most diversified family of fine centrifuges.

During 59 years of concentrated and progressive research on laboratory centrifuges, International has developed more models, more accessories, more special tooling than all other sources combined.

This specialized pool of knowl-edge and resources is available to you through an Interna-tional-trained representative of your authorized International dealer. Whether your centri-fuging problems are many or few, his unbiased advice can help you select the versatile or special-purpose International Centrifuge that fits your needs at lowest practical cost.

Before you choose your next laboratory centrifuge, get all the facts from your nearby International dealer or write:
SCIENCE

Next Question

For several years radio astronomers have been speculating about the existence of intelligent beings in the "radio" stage of civilization in planetary systems other than our own. As G. Cocconi and P. Morrison pointed out in Nature (19 September 1959), no theories yet exist which make possible "a reliable estimate of the probabilities of (1) planet formation; (2) origin of life; (3) evolution of societies possessing advanced scientific capabilities." Current astronomical theory suggests that planetary systems may be the rule rather than the exception in the universe. If this should be so, then there is a certain incalculable probability that x planets suitable for the evolution of living beings exist, and that on some of these, living beings may not only have evolved but have become highly intelligent.

Cocconi and Morrison assume that "To the beings of such a society, our Sun must appear as a likely site for the evolution of a new society. It is highly probable that for a long time they will have been expecting the development of science near the Sun. We shall assume that long ago they established a channel of communication . . . and that they look forward patiently to the answering signals from the Sun which would make known to them that a new society has entered the community of intelligence."

On the assumption that it is worth a try, even though the chance of success is extremely slight, early next year a small part of the operating time of the 85-foot telescope at the National Radio Astronomy Observatory at Greenbank, W. Va., will be devoted to a systematic search. The program is described by the director of the project, Frank D. Drake, in the January 1960 issue of Sky and Telescope (published 21 Dec. 1959). The most promising frequencies for exploration would be from 1000 to 10,000 megacycles per second. Within this range, Drake thinks (in agreement with Cocconi and Morrison), any being attempting interstellar communication would select the hydrogen line—a frequency at which radio telescopes would be operated most intensively anywhere in the galaxy during the early developmental phase of radio astronomy. The signals would presumably be confined to a narrow band width (the narrower the band width the greater the range) and should show a varying Doppler shift, since the source would be in orbit. The instrument will first be focused on Tau Ceti and Epsilon Eridani, sun-type stars about 11 light-years away.

What kind of signals might we expect? Radio astronomers agree that pulses to communicate prime numbers or some simple arithmetical problems might be suitable. A more sophisticated possibility would be, as Drake has suggested privately, for the "others" to send out pulses in clusters—a series of pulses followed by a pause, another series, another pause, and so on. The number of signals in each pulse could stand for intensity of light or dark, and we could build up a picture on the basis of the information received.

A final consideration remains. We must in addition assume that the intelligent beings with their highly developed radio technology have developed a kind of interstellar Point Four program for underdeveloped planets and that they are willing to devote a considerable effort to maintaining a long-term program of beaming messages to our hitherto unresponsive system.

Consider our own program. If you ask radio astronomers why we ourselves don't start to broadcast, you learn that they think the fiscal authorities would not approve. This leads to an unhappy thought: May not other civilizations (if they exist) have evolved analogous fiscal authorities? And may they not likewise be waiting in silence for our signal before they give their response?—G.DuS.
This transistorized spectrometer is by far the smallest and most compact available—yet it has more important and unique features than any other on the market today. Furthermore, it can be used directly with the Packard Auto-Gamma Sample Changer for completely automatic counting of test tube samples.

Write for Complete Information. Request Bulletin 400.
Forthcoming Events

January

27-29. American Mathematical Soc., 66th annual, Chicago, Ill. (J. W. Green, Univ. of California, Los Angeles 34.)
28-30. Mathematical Assn. of America, 43rd annual, Chicago, Ill. (H. M. Gehman, Univ. of Buffalo, Buffalo 14, N.Y.)
28-30. Western Soc. for Clinical Research, 13th annual, Carmel-by-the-Sea, Calif. (W. N. Valentine, Western Soc. for Clinical Research, Univ. of California Medical Center, Dept. of Medicine, Los Angeles 24.)

February

1-4. American Soc. of Heating, Refrigerating and Air Conditioning Engineers, semi-annual, Dallas, Tex. (Miss J. J. Szabo, ASHRACE, 234 Fifth Ave., New York 1.)
1-4. Instrument-Automation Conf., Houston, Tex. (Director, Technical and Educational Services, Instrument Soc. of America, 313 Sixth Ave., Pittsburgh 22, Pa.)
1-5. Clinical Cong. of Abdominal Surgeons, Miami Beach, Fla. (CCAS, 633 Main St., Melrose 76, Mass.)
3-6. American College of Radiology, New Orleans, La. (W. C. Stronach, 20 N. Wacker Dr., Chicago 6.)
3-6. Parathyroid Research, symp., Houston, Tex. (R. V. Talmage, Dept. of Biology, Rice Inst., Houston.)
4-6. Congress on Administration, 3rd annual, Chicago, Ill. (R. E. Brown, American College of Hospital Administrators, 840 N. Lake Shore Drive, Chicago 11.)
7-10. Radioactive Isotopes in Clinical Medicine and Research, 4th intern. symp., Bad Gestain, Austria. (R. Höfer, 2nd Medical Univ. Clinic, 13 Garnisonasse, Vienna 1X, Austria.)

(See issue of 13 November for comprehensive list)