Army Drops the Ball ............................................................. 383

The Space Environment: H. E. Newell, Jr. .......................... 385
As man looks forward to flight into space, he finds the outer regions not completely unknown.

The Social Responsibilities of Scientists: B. Russell ............ 391
A scientist can no longer shirk responsibility for the use society makes of his discoveries.

Molecular Heterogeneity and Evolution of Enzymes: N. O. Kaplan et al. .............. 392
Coenzyme analogs are useful for studying the evolution, classification, and differentiation of enzymes.

L. V. Heilbrunn, General Physiologist: H. B. Steinbach .......... 397

Academy Mission to Asia Will Study Scientific Cooperation; Facilities for Biological Study on Oceanographic Research Vessel ............................................................. 399

Lewis Henry Morgan: the Indian Journals, 1859–62, reviewed by W. N. Fenton; other reviews ............................................................. 404

Transmembrane Potential Measurements of Cells of Higher Plants as Related to Salt Uptake: B. Etherton and N. Higinbotham .............. 409

Characteristics of Blood-Brain Barrier to Gamma-Aminobutyric Acid in Neonatal Cat: D. P. Purpura and M. W. Carmichael .............. 410

Effects of Veratrine and Cocaine on Cerebral Carbohydrate-Amino Acid Interrelations: M. M. Kini and J. H. Quastel .............. 412


Sensitive 4r Detector for Scanning Radiochromatograms: L. L. Salomon .............. 415

Luminosity Losses in Deuteranopes: C. H. Graham and Y. Hsia; G. G. Heath .............. 417

Site and Mechanism of Tick Paralysis: M. F. Murnaghan .............. 418

In vitro Culture of Ehrlich Ascites Tumor Cells: E. E. Deschner and B. R. Allen .............. 419

Acyl N → O Shift in Poly- dl-Serine: G. D. Fasman .............. 420

Letters from B. Dibner; V. M. Massaro ........................................ 380

High Polymers; Forthcoming Events; New Products .............. 422

The upper first and second molar teeth of the type specimen of a fossil horse Asinus pons Quinn from the early Pleistocene Comosi fauna in the San Rafael Valley, southern Arizona. The specimen, which still retained the milk teeth, was sliced on a rock saw to show the enamel pattern about 30 mm below the crown of the unerupted molars. The crenulations are caused by the intricate folding of the enamel which was inked to bring out detail. The nearly enclosed loop near the margin of each tooth is the protocone, which is one of the diagnostic characters for identifying fossil horses. Each tooth is about 25 mm in anterior-posterior diameter. [Photo by J. F. Lance, Geochronology Laboratories, University of Arizona]
Editor's Summary

This copy is for your personal, non-commercial use only.

**Article Tools**  Visit the online version of this article to access the personalization and article tools:
[http://science.sciencemag.org/content/131/3398.citation](http://science.sciencemag.org/content/131/3398.citation)

**Permissions**  Obtain information about reproducing this article:
[http://www.sciencemag.org/about/permissions.dtl](http://www.sciencemag.org/about/permissions.dtl)