HE X-RAYS WOOD...

to help make telephone poles last longer

Chemist Jack Wright developed the use of this X-ray fluorescence machine for testing the concentration of preservatives in wood. Here he bombards a boring from a test telephone pole with X-rays.

This Bell Labs chemist is using a fast, new technique for measuring the concentration of fungus-killing preservative in telephone poles.

A boring from a test pole is bombarded with X-rays. The preservative—pentachlorophenol—converts some of the incoming X-rays to new ones of different and characteristic wave length. These new rays are isolated and sent into a radiation counter which registers their intensity. The intensity in turn reveals the concentration of preservative.

Bell Laboratories chemists must test thousands of wood specimens annually in their research to make telephone poles last longer. Seeking a faster test, they explored the possibility of X-ray fluorescence—a technique developed originally for metallurgy. For the first time, this technique was applied to wood. Result: A wood specimen check in just two minutes—at least 15 times faster than before possible with the conventional microchemical analysis.

Bell Labs scientists must remain alert to all ways of improving telephone service. They must create radically new technology or improve what already exists. Here, they devised a way to speed research in one of telephony's oldest and most important arts—that of wood preservation.

Nature still grows the best telephone poles. There are over 21 million wooden poles in the Bell System. They require no painting, scraping or cleaning; can be nailed, drilled, cut, sawed and climbed like no other material. Scientific wood preservation cuts telephone costs, conserves valuable timber acres.

BELL TELEPHONE LABORATORIES

World Center of Communications Research and Development
NEW!

Bausch & Lomb
SPECTRONIC 505*
Recording Spectrophotometer

less than half $3685 VISIBLE RANGE
(UV-VISIBLE, $4285)

See the revolutionary new instrument that directly records transmittance, absorbance, reflectance and emission in UV and visible ranges...

with an exclusive electronic sensor that automatically adjusts drum speed to variations in curve complexity...

featuring B&L Certified-Precision Gratings.

Only 36” x 22” x 15”, it’s as streamlined as the universally accepted B&L Spectronic 20* Colorimeter...

with a complete line of accessories including an exclusive new air-cooled Hydrogen lamp...

at less than half the cost of other recording spectrophotometers.

*Trademark, Bausch & Lomb Optical Co.

Write for your copy of Catalog D-2009, Bausch & Lomb Optical Co., 85603 Bausch Street, Rochester 2, N. Y.