Three generations of ARMA computers:

THE THIRD GENERATION

Package small...guidance true

The itinerant bee has nature's simplest yet most advanced guidance system. His built-in computational abilities—certainly his miniaturization—haven't yet been approached by man.

ARMA, however, is showing the way. A six-year computer miniaturization program, completely company-funded, is producing a family of progressively smaller and more sophisticated computers for use in man-made guidance systems. Here is the result thus far in this continuing program.

Small: ARMA's operational computer, now in use in inertial guidance systems, employing all semi-conductor circuitry, printed wiring techniques and conventional logical design organization. Smaller: a second-generation computer...all-solid state, with no moving parts, applicable to all types of navigation, embodying 1/4 the volume, 1/3 the weight and 1/15 the power requirements of its predecessor.

Still Smaller: the third member of the family. This microminiature computer, to be completed in 1961 from components now in existence, will be 1/25 the volume and 1/10 the weight of the first-generation model while performing the same guidance and control computations. It will have application in missile guidance, space navigation and guidance, orbit transfer problems, submarine navigation and periscope stabilization. The reliability of this sophisticated product will be assured by thorough testing in ARMA's environmental facilities—most complete in the industry.

ARMA, Garden City, N.Y., a division of American Bosch Arma Corporation...supplier of precision inertial guidance systems for long range Air Force missiles...the future is our business.

Attention Engineers: Write to E. C. Lester at ARMA about career openings in R & D programs.
"QUALITY IS OUR WATCHWORD"

...and our slogan is BUILT-IN to Elgeet-Olympus microscopes and accessories... quality and craftsmanship you can SEE and FEEL. Write today for specifications on models shown as well as on the complete Elgeet-Olympus QUALITY line.

WRITE DEPT. APS • 10 DAY FREE TRIAL • IMMEDIATE DELIVERY

Elgeet OPTICAL CO., INC....SCIENTIFIC INSTRUMENT AND APPARATUS DIVISION
838 SMITH STREET • ROCHESTER 6, NEW YORK
"Quality is our watchword...Precision Engineering our constant goal"
Letters
Chronology of the Last Glaciation

James B. Griffin in his extremely interesting article, “Some prehistoric connections between Siberia and America” [Science 131, 801 (1960)], states that “the Wisconsin ice advance is thought by some Pleistocene students to have begun about 50,000 B.C., followed by a warmer period corresponding to the Würm interstadial in Europe. This may have provided an ice-free corridor east of the Rockies some 30,000 years ago.”

I have no doubt that Griffin is right about the thinking of some, if not many, Pleistocene students. Apparently a short but important paper by H. Tauber and H. de Vries [Eiszeitalter und Gegenwart 9, 69 (1958)] has received less attention than it deserved. According to these authors, samples for radiocarbon dating from the Würm interstadial deposit at Brörup, Jutland, showed no significant activity after thorough decontamination. “This means,” they write, “that the interstadial at Brörup and the preceding cold period are older than 50,000 B.C.” And, one may add, perhaps much older.

It has been [D. B. Ericson and G. Wollin, Micropaleontol. 2, 257 (1956)] and still is my guess that the Würm I-II or Brörup interstadial is represented in the deep-sea sediments of the North Atlantic by a well-defined faunal zone containing low-latitude species of planktonic foraminifera among which Globorotalia menardii flexuosa is especially abundant. From the stratigraphical position of this zone, at the base of a relatively thick layer of sediment with cold-water species throughout, which lies, in turn, directly beneath postglacial sediment, it is difficult to see how it could be anything else than the Würm interstadial. Now, extrapolation of rates of sediment accumulation determined by radiocarbon dating of many samples from long sediment cores from various parts of the Atlantic, Caribbean, and Gulf of Mexico has shown that the time interval represented by the zone containing G. menardii flexuosa, or the Flexuosa zone, came to an end about 65,000 years ago.

Of course, my correlation of the Flexuosa zone with the Würm interstadial may be wrong in spite of its apparent plausibility. Even so, the important fact remains that Tauber and de Vries have shown conclusively that the climatic amelioration which separated the early and late Wisconsin glaciations occurred more than 50,000 years ago, and that therefore the short chronology of the last glaciation must be abandoned. Accordingly we conclude that if early man entered America during the Würm interstadial, he must have done so at least 50,000 years ago, and perhaps no less than 65,000 years ago. This does not impair Griffin’s argument regarding the time of man’s appearance in America. If anything, this longer chronology strengthens his conclusion that man did not enter America during the interstadial between the early and late Wisconsin glaciations.

David B. Ericson
Lamont Geological Observatory, Palisades, New York

Emotionality and Fear

Harlow and Zimmermann’s description of “Affectional responses in the infant monkeys” [Science 130, 421 (1959)] was a gem, but it did, I believe, contain a minor flaw.

Although it clearly described “affectional responses,” which are indeed emotional responses, when the term emotionality was used, it seemed that its meaning was limited to the disruptive emotion of fear. This can be seen in the use of the term emotionality index rather than fear index, and in the following statement (p. 425): “Children in the first group (mother present) were much less emotional [italics mine] and participated much more fully in the play activity than those in the second group (mother absent).” This first group was not less “emotional” but less fearful; presumably, if the first group was happier, it could also be called more emotional than the second.

Harlow and Zimmermann seem implicitly and inaccurately to equate emotionality with fear, an equation which would lead us to see courage, for example, as equivalent to emotionlessness. A very fine critique of the theory “according to which emotions are disorganized or disruptive states” is to be found in V. J. McGill’s Emotions and Reason (Thomas, Springfield, Ill., 1954).

Hence I think their fine article would be even finer if this inaccuracy in the use of the concept “emotionality” were clarified.

Nathaniel S. Lehrman
15 Canterbury Road, Great Neck, New York

I am in agreement with Lehrman’s position and have long been an opponent of those psychologists who would identify and define emotion as “disorganized and disruptive states.” In an earlier paper [Am. Psychologist 12, 673 (1958)], I unequivocally define love as an emotion, and I still subscribe to this theoretical position.

The term fear index would have been

(Continued on page 1740)
NEW

COMBINATION
SCALER-RATEMETER

for laboratory or classroom . . .

- A versatile instrument for making precise measurements in general laboratory counting applications.

- An accurate laboratory monitor for checking hands, clothing, glassware, tools, etc., for radioactive contamination as well as for continuously monitoring processes.

- A rugged, all-purpose training instrument for both scaler and ratemeter demonstrations and experiments.

The Model 150 Scaler-Ratemeter is intended for general purpose laboratory work with both organic and halogen-quenched Geiger-Mueller counters. Beta or gamma activity is indicated in three ways—as a decimal scaler count, as a count ratemeter reading and as an audible sound.

The scaler utilizes five glow-transfer counting tubes to give an all-electronic decimal scale of \(10^3 \). No mechanical register is used so that maximum reliability is achieved. Resolving time of the scaler is better than 200 microseconds for pulse pairs. The electric timer used with the scaler is a true odometer type, reading in hundredths of a minute to 1000 minutes. A single knob resets both scaler and timer.

The linear ratemeter has three ranges: 500, 5,000 and 50,000 counts per minute. Two time constants, 1 and 16 seconds, may be selected by a front panel switch. An audio output from a 4-inch speaker is variable up to 10 watts.

The high voltage is continuously variable from 400 to 1500 volts positive. After initial warm-up, high voltage variation will not exceed five volts at any setting.

Line voltage variations of 5 volts, in the range of 95 to 125 volts, will result in high voltage changes of less than 0.2% of setting. Load regulation is better than 5% from 0 to 50 microamperes. Ripple is less than 50 millivolts (rms).

Ordering information:

Model 150 Scaler-Ratemeter $495
F.O.B. Lyons, Illinois
Net 30 days
Complete accessories are also available.