A few of the many outstanding instruments which embody the traditions of this famous trade-mark:

UNIVERSAL CAMERA MICROSCOPE "ULTRAPHOT II"
with automatic exposure-setting device

PHOTO-MICROSCOPE with automatic exposure-setting device

LABORATORY MICROSCOPE "GF"
STEREO MICROSCOPE
PHASE-CONTRAST EQUIPMENT
FLUORESCENCE EQUIPMENT
ABBE REFRACTOMETER
POLARIMETERS

ROUTINE MICROSCOPE "KF"
INVERTED MICROSCOPE
DARK-FIELD EQUIPMENT
MICRO-PROJECTION EQUIPMENT
HAND REFRACTOMETER
HAND SPECTROSCOPES

Write for free detailed specifications on equipment of interest to you.

CARL ZEISS, INC.
485 FIFTH AVENUE, NEW YORK 17, N.Y.

Oberkochen, West Germany
COMPLETE SERVICE FACILITIES
Meetings

Forthcoming Events

October

6–8. Society of Experimental Test Pilots, annual symp., Los Angeles, Calif. (SETP, 44919 N. Cedar Ave., Lancaster, Calif.)

8. Helminthological Soc. of Washington, 50th, College Park, Md. (Publicity Committee, HSW, Animal Disease and Parasite Research Branch, ARS, U.S. Department of Agriculture, Beltsville, Md.)

10–12. Industrial Health, cong., Charlotte, N.C. (Council on Occupational Health, AMA, 535 N. Dearborn St., Chicago 10, Ill.)

10–12. National Electronics, conf., Chicago, Ill. (T. F. Jones, Jr., School of EE, Purdue Univ., Lafayette, Ind.)

12–13. American Vacuum Soc., 7th natl. symp., Cleveland, Ohio. (AVS, Box 1281, Boston 9, Mass.)

12–14. Nuclear Reactor Chemistry, conf., Gatlinburg, Tenn. (C. D. Susano, Oak Ridge National Lab., P.O. Box Y, Oak Ridge, Tenn.)

13–15. Optical Soc. of America, Boston, Mass. (M. E. Warga, OSA, 1155 16 St., N.W., Washington 6)

15. American Soc. of Safety Engineers, annual, Chicago, Ill. (A. C. Blackman, ASSE, 5 N. Wabash Ave., Chicago 2)

15–16. American Acad. of Psychotherapists, 5th annual conf., Cleveland, Ohio. (B. J. Barkley, 1856 Coventry Rd., Cleveland Heights 18, Ohio)

16. American College of Dentists, Los Angeles, Calif. (O. W. Brandhorst, 4236 Lindell Blvd., St. Louis 8, Mo.)

16–22. High-Speed Photography, 5th intern. cong., Washington, D.C. (V. H. Allen, Soc. of Motion Picture and Television Engineers, 55 W. 42 St., New York 36)

17–18. Basic Science in France and the...
YOU CAN depend on the RELIABILITY of COLORADO SERUM CO.

Order with confidence, the quality and dependability your laboratory and research needs demand. Prompt service. All correspondence and inquiries answered immediately.

- sera
- bloods
- ultrafiltrates
- complement
- globulins
- fluorescent materials
- diagnostic reagents
- tissue culture reagents

We maintain a variety of our own laboratory animals under the finest conditions.

Write for this FREE CATALOG NOW! No salesman will call.

- Laboratory and General Office
- PEAK OF QUALITY
- 4950 YORK STREET • DENVER 16, COLORADO • MAIN 3-5373

PHOTOVOLT

LINE-OPERATED SUPER-SENSITIVE ELECTRONIC MULTIPLIER-PHOTOMETER

For the exact measurements of extremely low light values down to 1/10,000 microlumen . . . for absorption and flame photometry. Colorimetry through microscopes. Scintillation measurements on crystals. Fluorescence trace analysis. Monochromatic color densitometry. Measuring high densities on micro areas. Light measurements through telescopes.

MOD. 520-M

Write for Bulletin 2360 to

PHOTOVOLT Corporation

95 Madison Avenue • New York 16, N. Y.

CHEMICAL EXPOSITION U.S.A. 1960

Sponsored by the American Chemical Society's New York Section, Inc. and held concurrently with the 138th National Meeting of the American Chemical Society.

The STATLER HILTON

33rd St. & Seventh Ave., New York City

September 13-15, 1960

Tuesday, 13th.

9 AM to 6 PM

Wednesday, 14th.

9 AM to 9 PM

Thursday, 15th.

9 AM to 6 PM

Admission to exhibits free to industry and profession.

Children not admitted.

Chemical Exposition U.S.A. 1960 will mark the first Chemical Exposition held concurrently with a national meeting of the American Chemical Society in New York City.

Exhibits will comprise chemical and pharmaceutical companies, manufacturers of instruments, laboratory supplies & equipment, as well as publishers and service firms.

For all further information:

Connolly & Leopold Exposition Management

Managing Directors

Hotel Sheraton Atlantic, New York 1, N. Y. PE 6-5700, Ext. 697, PE 6-5933
VACUUM GAGE reads pressure automatically and displays digital values as illustrated numerals with decimal automatically placed. Response time is less than 2 sec. Five ranges from 0.01 to 900.0 ρ-Hg are covered. Should pressure exceed the range of the instrument, a warning light flashes on and the display numerals go off. A cold-cathode ionization gage calibrated for dry air is supplied. Calibration for other gases is available. (Nuclear Metallurgical Enterprises, Dept. Sci773, 1004 United Office Bldg., Niagara Falls, N.Y.)

LIGHT-SCATTER PHOTOMETER for continuous monitoring of atmospheric dust operates by chopping light from a single source into two beams and comparing the light reflected by particles in one beam with the intensity of the other, monitor beam. The ratio of the scattered to incident light is recorded. The range of sensitivity can be varied over wide limits. A fail-safe dual-frequency model suitable for remote telemetering is also available. (Monitron Co., Dept. Sci770, 1815 Wilaray Terrace, Cincinnati 30, Ohio)

SIDE RULE is specifically designed for calculations involving the concentration of solutions and the relationship of pressure, volume, and temperature of a gas. Problems associated with molarity, molality, mole fraction, and volume fraction are said to be solved in a fraction of the time required with an ordinary slide rule. Standard scales for multiplication and division are also provided. (Dyna-Slide Co., Dept. Sci769, 600 S. Michigan Ave., Chicago 5, Ill.)

AUTOMATIC SAMPLE CHANGER for radioactivity measurements features low background of 2 count/min achieved by selection of low-background materials of construction, graded shielding, and guard detector. Up to 35 samples are accommodated. Time to reach preset count is printed together with sample identification. (Nuclear-Chicago Corp., Dept. Sci728A, 539 E. Howard Ave., Des Plaines, Ill.)

pH RECORDER combines a pH meter and a strip-chart recorder. Pressure-sensitive paper is used for recording. The chart drive can be switched off so that the meter may be used as a pH indicator. Connections are provided for insertion of a platinum resistance thermometer to provide automatic temperature compensation. The probe unit provides a unitary glass-electrode system protected by polyethylene. (Analytical Measurements Inc., Dept. Sci774, 585 Main St., Chatham, N.J.)

Measure fractions of a microvolt... approaching the Johnson noise limit... with Beckman DC Breaker Amplifiers. These high gain, low drift amplifiers are insensitive to vibrations, provide fast response and feed outputs directly to standard recorders. This means you can measure dc and low frequency ac voltages which were impossible or too tedious with devices like suspension galvanometers. A few applications include use with ultra-precision bridge circuits for measurement of differential thermocouples, nerve voltages, and other extremely low voltages. For detailed specifications write for Data File 38-37-11

Epidemiology of Mental Disorder

AAAS Symposium

Volume No. 60

Edited by Benjamin Pasamanick

A symposium organized by the American Psychiatric Association to commemorate the centennial of the birth of Emil Kraepelin; cosponsored by the American Public Health Association.

...pioneering interdisciplinary studies by investigators from biostatistics, genetics, obstetrics, pediatrics, psychiatry, psychology, public health and sociology.

December 1959, 306 pp., $6.50

AAAS members' cash orders, $5.75

English Agents: Bailey Bros. & Swifen, Ltd., West Central Street London W.C.1, England

American Association for the Advancement of Science

1515 Massachusetts Ave., NW
Washington 5, D.C.
TRITIATED THYMIDINE

2300 millicuries per millimole
250 microcuries/$15.00
500 microcuries/$25.00
1.0 millicurie/$40.00
5.0 millicuries/$160.00

CATALOG ON REQUEST

new england nuclear corp.
575 ALBANY STREET, BOSTON 18, MASS. Liberty 2-5964

FRACTION COLLECTORS

...for every program...for every budget!

CONTINUOUS...
for long-term or overnight use.
- 240 test tubes, 18 x 150 mm.
- Four rows of 60 each.
- Turntable, 24" diameter.
- Time drop and volume collection.
- You can select exactly what you need from 12 different models!
- Immediate Delivery. * Prices from $400.00 F.O.B. N.Y.C.

For complete description of all Fraction Collectors write for Bulletin 3-4000

Laboratory Apparatus
BUCHLER INSTRUMENTS, INC.
formerly Laboratory Glass & Instruments Corp.
514 West 147th St., New York 31, N.Y.
Telephone: ADirondock 4-2626

REFRIGERATED...
the mobile cold-room, refrigerated from column to collecting tubes.
- Fractions in the turntable temperature controlled.
- Fraction collectors removable for all-purpose cold-room work.
- Mobile—on casters.

NEW AIR POLLUTION DETECTION UNIT
Gives fast, reliable, on-the-spot analysis simultaneously of 18 major pollutants in the atmosphere. A lightweight, "portable laboratory" that plugs into the 12 volt car lighter receptacle. (Units for other voltages on special order.) Contains all the equipment needed for routine tests. Write for Booklet 313.

No. 20770 $595.00

CENTRAL SCIENTIFIC CO.
A Subsidiary of Cenco Instruments Corporation
1718-M Irving Park Road • Chicago 13, Ill.
Branches and Warehouses — Mountainaire, N. J. • Boston • Birmingham • Santa Clara • Los Angeles • Tulsa • Houston • Toronto • Montreal • Vancouver • Ottawa

For quick, simultaneous analysis of 18 pollutants...

MORTON STAINLESS STEEL CULTURE TUBE CLOSURE

and DeLONG CULTURE FLASK*

This convenient combination provides greater ease and safety in handling. Prevents contamination from the air and reduces evaporation to approximately 1/2 that of conventional Erlenmeyer flasks and cotton plugs. Immediate shipment on 7 sizes (ml.): 25, 50, 125, 250, 300, 500, 1000.

*PATENTS PENDING

Write or wire for full specifications and prices.

BELLCO GLASS INC. VINELAND NEW JERSEY

For additional information, visit www.bellcoinc.com
Letters

On Un-American Science Reporting

The views expressed by your contributors are, of course, their own, and hence, in a given reader’s opinion, may be biased or inaccurate or both. This is the essence of free speech. But one has the right, I believe, to expect factual material to be reported truthfully and objectively, without sneers and without slanting. Such is not the case in the news article published in the 1 July issue [Science 132, 24 (1960)] entitled “Un-American Science.” The facts as stated are false and misleading. Richard Arens, staff director of the House Committee on Un-American Activities, is reported as having “enemies” who seem to be making progress in getting his job. The reason for this happy situation, as your reporter sees it, is that Arens has been helping W. P. Draper, a New York millionaire, make certain grants, the purpose of which is to prove the Negro mentally inferior to the white, and eventually to work out a plan to send American Negroes back to Africa. Your reporter asserts with poorly concealed glee, that although Representative Walter is, for some reason, not greatly excited, Speaker Rayburn “appeared” to be “extremely upset” by Arens’ activities in behalf of “un-American science” and that “it is believed that Arens will no longer be staff director when the next Congress convenes.”

Now this stuff is a queer mixture of truth and falsehood. It is true that Arens has enemies, as has every patriotic American who comes out publicly and courageously against subversion, even when found in high places. It is also true that Representative Walter is not concerned about Arens’ connection with Draper. It is false that Speaker Rayburn is greatly “upset”; and unfortunately for your reporter’s peace of mind, it appears as though Arens will continue as staff director of the Un-American Activities Committee for some time to come.

Your reporter’s story is even more reprehensible in its references to W. P. Draper. Draper is interested in racial differences, and he would like to see our present immigration laws remain on the books. He is not interested in “proving” the Negro mentally inferior to the white, and he has never proposed a plan for sending Negroes back to Africa nor does he advocate such a scheme.

Draper has made several grants for research in the general area of race relations. His reasons are twofold. First, he believes that objective, unbiased work on racial matters is impossible in those university departments where the equalitarian dogma has been accepted as a basic premise. And secondly, he believes that young men of independent mind hesitate to publish results showing racial differences for fear of reprisal from the almost fanatic believers in racial equality. To those who have experienced the vaunted “tolerance” of the dedicated “liberal,” neither of these propositions will seem to be extreme. Grants for research have been made and work is in progress. In no case have any strings been tied to these grants with respect either to method or results. I know this to be true, as I have placed several grants myself.

Apparently, your reporter took the “facts” for his story from a news item published some months ago in a Midwestern newspaper by a feature writer who wanted to discredit the Un-American Activities Committee. No attempt, obviously, was made to check the accuracy of these scurrilous statements. As a result, his article is a snide affair in which the editors of Science can take little satisfaction.

Henry E. Garrett
1872 Winston Road,
Charlottesville, Virginia

Education and Research

It seems to me that Sander Rubin [Science 132, 46 (1 July 1960)] has inadvertently put his finger on the crux of the problem with his statement: “The primary mission of a college is to educate its students, not to conduct research.” This is a distinction that is all too frequently made and one that, in my opinion, false. Certainly in the physical sciences (the only area in which I can claim special competence) one of the things that every student should learn is that the sciences are not a static thing to be learned once and for all, but a continuously growing thing in which new developments require periodic major overhauls of our ways of looking at, and understanding, the universe around us. One of the most important things that a young person can learn in school is the necessity of keeping up with his field, and probably the most important things that such a young person can learn in school are the methods of study and the habit of study which make it possible for him to do so. These are things that, I think, can be really learned only in an atmosphere in which some research is actually going on.

Although I can personally certify to the necessity of these lessons only in the physical sciences, I strongly suspect that it would do no harm for the liberal arts majors to learn them too, at least in the areas of economics and po-
ST E R I M A G
Crystal sharp stereoscopic image
Built-in focusable light source
Long 7" working distance — wide field
Stable base with universally adjustable mounting
Fixed magnification 10X and 20X models each $165

COOKE TROUTON & SIMMS
91 WAITE STREET, MALDEN 48, MASSACHUSETTS
IN CANADA: 77 GRENVILLE STREET, TORONTO

GLASS ABSORPTION CELLS made by KLETT

Scientific Apparatus
Klett-Summerson Photoelectric Colorimeters—
Colorimeters — Nephelometers — Fluorimeters—

Klett Manufacturing Co.
179 East 87 Street, New York, New York

Trouble Free
STUDENT MICROSCOPES

Graf APSCO
CHICAGO, U.S.A.
NEW DESIGN
EXCLUSIVE
SAFETY FEATURES
MEDICAL QUALITY OPTICS
10X OCULAR
OBJECTIVES
16mm (10X) N.A. 0.27
4mm (44X) N.A. 0.66
TRANSPORTATION INCLUDED
Write for catalogue listing safety features
MODEL GB2A
List price $117.00 ea.
Quantities of 5 or more $105.30 ea.

THE GRAF-APS CO.
5868 BROADWAY
CHICAGO 40, ILL.

Bird INFUSION PUMP

Used for continuously and accurately metering small quantities of liquid which do not react with glass. Motor-driven, hydraulic adjustable metering pump; hydraulic operated driving plunger and delivery syringe. Rate of liquid delivery is easily adjusted, accurately read to a hundredth of a cc. per minute. Adjusts rate of flow from .01 cc. to 2.5 cc. per minute.

CAT. NO. 71-049

PHIPPS & BIRD, INC.
Manufacturers & Distributors of Scientific Equipment
6th & Byrd Streets - Richmond, Va.
political science. It has become almost a platitude that the physical sciences have progressed, in recent years, at a rate astronomically greater than the rate of progress shown by the economic and political sciences. I believe one reason for this may be that the nonphysical sciences are too often taught as immutable truths, not subject to continuous re-examination and re-evaluation as a result of experimental tests—that is, research.

CHARLES F. ROBINSON
Consolidated Electrodynamics Corporation, Pasadena, California

May I comment on the statement of Sander Rubin about my “position” in the matter of teaching and research? He stated only half of it—and half a position is worse than none—when he noted that I claimed “any scholar not doing research simply cannot be a fully effective teacher.” I also claimed—and neither half is complete in itself—that any scholar not immersed in teaching may have great difficulty in being a fully effective research worker. The point of my letter was not to take sides or to state an ideal but to propose that side-taking in this issue is tantamount to missing the point.

Some scholars prefer teaching, others research: some cannot make a sensible dichotomy. Whatever the case, to prefer one to the exclusion of the other may turn one aspect of scholarly activity into a mere technical competence like watchmaking or ghostwriting.

The deeper question is whether we want our universities and colleges (unlike our secondary and preparatory schools) manned by scholars or by Mr. Chipses. The original editorial and my letter [Science 131, 71, 1282 (1960)] came down firmly on the side of scholars. The ultimate question may be whether a university should “give” an education by “good teaching” or create the kind of place where an education is available to those who have sufficient interest and intelligence to take it.

PAUL BOHANNAN
Northwestern University, Evanston, Illinois

Shatter Cones and Their Origin

The shatter cones in fine-grained limestones and dolomites, described by Dietz [Science 131, 1781 (1960)] are merely a much-magnified version of the cones of percussion well known to archeologists. It is this conical or conchoiid fracture in flints and cherts that made flint-working possible and started mankind on the technological exploitation of his environment.

Miniature cones of this kind are perhaps best seen in plate-glass doors and windows, where they have been produced by the impact of pebbles thrown up by passing cars, or bullets from air rifles or .22’s in the hands of teen-agers. The apical angles of these cones are much blunter than in those shown by Dietz—well over 90° in all I have seen. This is presumably because of the lower impact velocity or lower energy of the pebbles, relative to that of a meteorite.

Cones of this perfection rarely if ever appear in worked flint, probably because man had no use for them. The impact of his hammerstone or flaking punch was deliberately localized near the edge of the flint block, so that a flake of controlled size and shape could be split off.

Surely somebody must have worked out the mathematical theory of shock waves in extended solids, such as a thick stratum of stone. Empirically, it can be seen that a greater impact produces sharper cones, that the conical wave penetrates deeper before being damped, and that at high velocities and energies the irregularities in the medium become a less controlling factor. Dietz speaks of shatter cones which have penetrated more than 12 meters in shale, a laminated stone, whereas impact cones are usually stopped by the layer of plastic in safety glass. Nevertheless, the phenomenon of conical fracture in stone cannot be considered one of great energies or velocities, except in so far as the size of the cone is concerned.

I do not recall having seen parasitic coning in flake surfaces in chipped flint. However, this is perhaps because of the distortion of the conical wave form and the different order of magnitude of the energies produced by a blow of a hammerstone and the impact of a meteorite.

The apex of the cone is ordinarily at the point of impact, and this cannot be the case with the parasitic cones.

I presume that they develop where the main shock wave strikes some structural discontinuity in the stone, which initiates a new wave at that point. This suggests that where the apices of the presumed master cones are found below the surface of the rock strata, they may themselves be parasitic to a much larger cone with its apex at the surface, produced by the impact. Perhaps more logically, they may have been initiated at points along the front of some sort of spherical shock wave, if such forms exist.

I question Dietz’ conclusion that volcanic explosions cannot initiate shatter cones, though they may not be able to produce cones as large or as sharp as those in his illustrations. In any case, cones of volcanic origin should be produced with their apices pointed.
A new serological water bath, only 7" high, has been designed for use where there is little overhead clearance. Temperature range without cover is 3° C. above room to 60° C. with a differential of ±0.5° C. Bath is designed to control temperatures most critically at working levels of 37° C. and 56° C. Stainless steel, glass fiber insulation. National's standard instrumentation includes off-on switch, calibrated hydraulic thermostat, neon pilot light and glass thermometer, range 0° to 110° C. Movable thermometer holder permits most accurate reading.

Write for bulletin or complete catalog.

Formation of cones is a well-known common mode of failure both by percussion and by static loading. The point I make is that shatter cones are a distinctive type of percussion cone apparently related in nature to hyper-velocity meteorite impact and a subsequent engulfment of the rock by an intense shock wave.

Conchoidal coning is another distinctive mode of coning. It is typical of glassy and isotropic cryptocrystalline solids. As the name implies, it is characterized by horizontal shell-like ribs. Prehistoric man, and convicts working on the stone piles at Sing Sing for that matter, have produced uncounted millions of conchoidal fractures but never a shatter cone.

As I mentioned, artificial shatter cones are produced by nuclear detonations and high-brisance explosives. Just recently I have received from E. M. Shoemaker and D. Gault a plaster cast of the target crater produced in Kaibab limestone by a 3/16-in. glass pellet fired at 18,000 ft/sec at the Moffet Field laboratory of the National Aeronautics and Space Administration. At ground zero there is a beautiful nest of minute shatter cones.

The apex of a shatter cone is not the point of impact; rather, shatter cones are formed by the spherically spreading shock wave when it strikes some lithologic discontinuity. The spreading of the fracture is then limited by the next lithologic discontinuity, so that the cone may be either 1 centimeter long or many meters. The apex of the cone points toward the advancing shockwave front. At the nuclear detonation site mentioned, jumbled and caved rocks had fallen into the explosion cavity. It was not possible to reconstruct the original orientation of the shatter-coned rock.

Shatter cones have never been reported from volcanic explosion sites. I don't believe they exist. Discovery there would be a simple and sufficient disproof of my thesis that shatter cones are a distinctive criterion for hyper-velocity meteorite impact. I urge volcanologists to search for them. Science progresses not only by the discovery of new truths but also by discarding erroneous hypotheses.

P. Schuyler Miller
Allegheny Chapter, Society for Pennsylvania Archaeology, Pittsburgh