For deeper knowledge of our earth and nearby space, the moon and planets, interplanetary space and distant galaxies...

NASA introduces the new GODDARD Space Flight Center

The Goddard Space Flight Center has just occupied an ultra-modern research complex situated on 550 acres of rolling parkland in Greenbelt, Maryland, a residential suburb of Washington, D.C. Here, many of our scientists and engineers work to advance space science and technology through a broad program of theoretical study, while others design, develop and construct scientific payloads for space vehicles and supervise their launchings. Our technical staff is also concerned with the analysis of space data obtained through Goddard's world-wide tracking and communications network, the nation's center for such activity.

With Tiros, Echo, Pioneers IV and V, Explorer VII, and Project Mercury, Goddard has already written scientific history. Technical men who wish to work in the van of progress are invited to join Goddard or any of the other NASA research centers listed below. Address your inquiry to the Personnel Director.

National Aeronautics and Space Administration
NASA Goddard Space Flight Center, Greenbelt, Md. • NASA Flight Research Center, Edwards, Calif.
Since its introduction six years ago, the Tri-Carb® Liquid Scintillation Counting Method has become the leading method for the radioassay of samples containing Tritium, Carbon-14, Sulfur-35 and other alpha- and beta-emitters. More samples of Tritium and Carbon-14 are now being counted in the Tri-Carb Spectrometer than in any other instrument. Look around—with hundreds of installations throughout the world, there is a Tri-Carb Spectrometer near you.

The Tri-Carb Method has been developing continually—both by new sample preparation techniques and by improvements in instrumentation. And now the latest advance is transistorization.

Greater reliability is one of the principal advantages gained by transistorizing the Tri-Carb Spectrometer. Both size and weight of the electronics have been reduced. Power consumption is appreciably lower and much cooler operation is achieved. Line voltage regulation and over-all stability have been improved significantly by the transition to solid state electronics.

In gaining these advantages no compromise has been made in operating performance. Specific figures showing the excellent counting efficiencies with low backgrounds that are obtainable under various conditions and with many types of samples are reported in the literature by numerous Tri-Carb users. Similar performance is routinely achieved with the new transistorized design.

Other new developments are broadening the scope of liquid scintillation counting. Improved sample preparation techniques now make this the method of choice for assaying almost every type of sample material—proteins, carbon dioxide, tissue, lipids, tritiated water, completely insoluble materials, etc. Special accessory devices have been designed to adapt all Tri-Carb Spectrometers, old and new, to continuous liquid flow monitoring in applications such as column chromatography, amino acid analysis, and tracer or safety studies in plant or field streams. Other new Packard accessory instruments are also available for adapting all Tri-Carb Spectrometers for radioassay of the effluent from gas chromatographs by both continuous flow and fraction collection methods.

Transistorized Tri-Carb Spectrometers are available now—and at no increase in price over the older models. They are in production and we can make prompt delivery. To receive complete information on new transistorized Tri-Carb Spectrometers and new accessory equipment as well as general information on current sample preparation techniques, write or telephone.