introducing exclusive

NEW APPLICATOR for

THIN LAYER CHROMATOGRAPHY

THE ONLY CONTROLLED METHOD FOR APPLYING REPRODUCIBLE LAYERS OF VARIABLE THICKNESS

In addition to the previously offered standard applicator for TLC, already used by hundreds of laboratories in the U.S. and Canada, Desaga has now developed a variable thickness instrument — MODEL “S.” By means of a micrometer screw setting any layer thickness to 2000 μ may be applied — the only applicator available which permits the selection and reproduction of a specific layer thickness. This feature not only increases the versatility of the equipment but permits its use with ordinary (high quality) window glass.

Only the new Desaga equipment (after Stahl) offers a complete line of apparatus and adsorbents for TLC. Besides the previously available Silica Gel G, Aluminum Oxide G and Kieselguhr G from Merck (Darmstadt, Germany) we are now introducing two new Cellulose Powders from Macherey, Nagel & Co.—with and without binding agents.

The major advantages of TLC are:

1) The speed of separation — 20 to 40 minutes.
2) The wide quantitative range — from less than one microgram to 10 mg on a single glass plate.
3) The possibility of using highly aggressive (corrosive) sprays.
4) The simplicity of the technique and the limited financial investment necessary for its introduction.

Equipment for TLC may be ordered as complete assemblies or as individual components—all available for immediate delivery from stock. In experience, Desaga TLC puts you ten years ahead. For further information request our NEW TLC BULLETIN.

BRINKMANN
BRINKMANN INSTRUMENTS, INC., 115 CUTTER MILL ROAD, GREAT NECK, N.Y.

PHILADELPHIA • CLEVELAND • HOUSTON • MIAMI • MENLO PARK, CAL. • ST. LOUIS
What's good for nuclides in New Haven is good for those in New Zealand*

We think the reason people all over the world buy TMC pulse analyzers is pretty much the same reason they're widely purchased and used here: competently designed, bug-free circuits... straightforward operation with the same performance and stability today as yesterday... easy access to sub-assemblies and uncomplicated servicing if needed. Another way of putting it is the instruments give the user the information he wants in his work— with predictable behavior—regardless of where his site, lab or plant may be located. Here are two current examples:

The TMC CN-110 256 channel analyzer offers 7 interchangeable plug-in logics, including pulse height, time of flight, pulsed neutron, multiscaler, mass spectrometer, and coincidence pair. This widely used and thoroughly proven analyzer (over 100 units have been delivered) employs all-transistorized circuitry. Analog, binary, octal and decimal readout may be used. Data can be recorded on strip chart or X-Y recorders, printed paper tape, punched paper tape, or punched cards.

The Model 404 is a compact, 400-channel analyzer you can use anywhere there's a wall outlet and one square foot to put it down. It has a magnetic core memory that can be used in sub groups of two or four; four separate inputs and associated amplifiers; internal pulse routing circuitry; pushbutton data transfer and display overlap; power requirement of only 25 watts, and many "system" advantages. While its versatility is a little less than the CN-110's, so are its size, price and purpose quite different from the 110's. Each does its own job well.

*Also wherever TMC Pulse Analyzers are used... in Canada, Brazil, Australia, Japan, Yugoslavia, France, Italy, Germany, Belgium, Sweden, Denmark, Switzerland, Israel, Formosa... as well as the United States.

WRITE FOR LITERATURE.

TECHNICAL MEASUREMENT CORPORATION
441 WASHINGTON AVE., NORTH HAVEN, CONN. • CE 9-2501
A compact, wholly self-contained liquid scintillation detector that can be used as a whole body counter for small animals, as a radioactivity counter for bulk samples of foods, soils and other materials, and as an arm-only counter on humans.

This versatile and economical new instrument enables the research worker to count even natural levels of radioactivity conveniently. Because of the great sensitivity and excellent counting geometry of the ARMAC Detector, high counting rates can be obtained with the administration of very small amounts of radio-nuclides . . . only 1/100 to 1/1000 of maximum permissible levels.

A complete system consists of the ARMAC Detector and a Model 410A Auto-Gamma Spectrometer, both mounted on a mobile housing. Provision is made for addition of automatic data read-out or ratemeter presentation. Complete information can be obtained from your Packard Sales Engineer or by writing direct to the company.
what extent the author had his tongue in his cheek throughout the entire book, in view of his remark on page 31: "But make no mistake; one can quite readily become an excellent physicist even if one's intellectual faculties are not highly developed."

The final chapter, "The atomic scientist and the believer," seems quite uncalled for and has no apparent connection with the rest. One wonders whether there is in France an intransigent core of fundamentalists who have to be appeased in some way.

All in all, in spite of its lively style and not infrequent flashes of insight, the book leaves an unpleasant taste.

P. W. BRIDGMAN*
Department of Physics,
Harvard University
* The author died on 20 August.

Birds, Bees, and Good Society

Communication among Social Bees.

These books are about similar subjects, and you can more than double your enjoyment by reading them one after the other, for then there is the added pleasure of contrasting both the authors and their favorite animals.

Lindauer was a student of Karl von Frisch. And this book carries further the studies summarized in von Frisch's wonderful Bees: Their Vision, Chemical Senses, and Language. Lindauer continues by asking specific questions about the society of the honeybees. First he asks how the work is divided among the inhabitants of the hive. He approached the question by watching individual bees, night and day, with stop watch in hand, until he had a detailed time-motion study. Bee No. 107, observed for 177 hours, spent all of 69 hours and 53 minutes just loafling. Between rests, she frequently strolled through the hive, not aimlessly it seems, but on patrol to see which chores—cell cleaning, brood tending, guarding, and the like—needed doing. In the hive, labor is organized by the workers coming across something that has to be done and then doing it, not by directives from above.

Lindauer goes on to consider communication among the bees. In the heat of summer, the bees cool the hive, as much as 35° centigrade, by sprinkling water over the brood cells. Water is fetched to the hive by the older, foraging bees. The number of trips made by the foragers is determined by how quickly the hive bees take the water load. This relationship is demonstrated on a graph in which the number of collecting flights is plotted as a function of the time taken to deliver the water load. When the delivery time is less than 40 seconds, the foragers also give an "alerting" dance, to recruit others to the work. This kind of careful measurement is the mark of von Frisch passed on to his student.

Next Lindauer asks how a swarm of bees selects a new site for a hive. It turns out that the scouts report by means of a dance which shows the direction, the distance, and the quality of a proposed site. The swarm remains, for days if necessary, in temporary quarters until the scouts reach a consensus on the best possibility, then the whole swarm moves off to the new site. These are just samples of the book's contents. Lindauer also discusses the evolution of communication in honeybees, which he studied by observing other species of bees, and some of the sensory and computational problems involved in using the sun as a reference point for the well-known food collecting dances. One fascinating discovery is that bees which have been raised in a cell under artificial light need to practice for some days before they can navigate by the sun. They must learn how the sun moves. But after seeing the arc of the sun only in the afternoon, they can navigate in the morning on the first try.

Tinbergen's book has a broader goal. For years he watched with infinite, patient care the day-to-day life of the herring gull. His aim was to understand the significance of every movement and of every call and to see how the somewhat rudimentary society of the gullery is organized. Tinbergen's conclusions are drawn mostly from field notes; the relatively few experiments reported here were also discussed in his Study of Instinct. The focus of Herring Gull's World is not on the experimental analysis of behavior; the volume is, in the finest sense, a work of natural history. He pays particular attention to reproduction and rearing of the young, from the first arrival at the gullery, the establishment and defense of the territories, pair formation, incubation, and the feeding and behavioral development of the chicks. The present book is a slightly revised edition of the work first published in 1953.

These books by Tinbergen and Lindauer are clearly separated by aspiration and by method. Undoubtedly Lindauer's approach is more satisfying to the experimental scientist; we know the questions, the observations, and the numerical results. On the other hand, Lindauer's questions are based on generations of observation of life in the bee hive, exactly the sort of natural history that Tinbergen provides for the herring gull. Both types of work are necessary, and the two books are perfect examples of two levels of scientific exploration. It is somewhat amusing, however, to see that Tinbergen reaches far more sweeping conclusions about behavior in general.

Perhaps in these books there are also line-by-line hints of how the authors' temperaments determine their approach. Tinbergen loves his birds, he delights in their motions and abilities, he writes of them with joy and verve—and his enthusiasm is catching. He also tells a good deal about Niko Tinbergen—every reader will want to meet the charming author. Lindauer writes with precision. He leaves untold his adventures encountered in following bees from Germany to Ceylon to South America; the excitement comes from the subject itself. Both books are well illustrated.

A comparison between the animals only re-emphasizes the astounding complexity of the bees, whose behavior puts most vertebrate societies to shame.

WILLIAM G. VAN DER KLOOT
Department of Physiology and Biophysics, New York University School of Medicine

New Books

Biological and Medical Sciences

Economics and the Social Sciences

General

Mathematics, Physical Sciences, and Engineering

For Insecticide Screening

ACETYLCHOLINESTERASE
(20,000 units per vial)

Now available for prompt shipment

Winthrop LABORATORIES

Special Chemicals Department
1450 Broadway, New York 18, N. Y.

PHOTOVOLT
LINE-OPERATED MULTIPLIER
FLUORESCENCE METER
model 540

- High sensitivity... full scale for 0.001 microgram quinine sulphate
- Micro-fluorimetry... liquid volumes down to 1 ml
- Low blank readings... linear instrument response
- High sensitivity nephelometry... minute turbidities
- Fluorescence evaluation of powders, pastes, and solids; also for spot-tests on filter paper without elution
- Selection of filters, interference filters, and sample holders

Write for Bulletin No. 392 to:
PHOTOVOLT CORP.
1115 Broadway • New York 10, N. Y.

Also: pH Meters, Colorimeters, Densitometers

GYRO ROTORY®
WATER BATH SHAKER

For Reproducible Temperature and Agitation

- Variable speed control, from 85 to 285 rpm or 140 to 400 rpm.
- Heats rapidly to pre-set temperatures from ambient to 100°C within ±0.5°C.
- Adjustable level device automatically maintains desired water level in the bath.
- Triple-eccentric-shaft drive transmission assures smooth, uniform agitation of all flasks.
- Built with precision for continuous operation.
- Performance is cool, quiet, vibrationless.
- A bench-top unit with interchangeable platforms having large capacity for flasks, tubes, and beakers. Used with gaseous atmospheres.
- Operates under lab benches and desks with space-saving dolly accessory.
- Models available with reciprocating action.
ISOTOPES for Your Development Work

Oak Ridge National Laboratory offers more than 300 radioactive and stable isotope products.

RADIOISOTOPES

Processed Solutions — 90 processed radioisotopes may be obtained, including many carrier-free and high specific activity products.

Now Available — Scandium-46 at $150 a curie; sulfite-free I-131 at $2 per mc.; technetium (as element or ammonium pertechnetate) $100 a gram; calcium-47, with less than 5% Ca-45, $200 per mc.; I-125 in research quantities.

STABLE ISOTOPES

More than 200 stable isotopes available from 50 elements. Chemical processing and target fabrication services also offered, ultra-high isotopic purity in a number of isotopes.

For information or literature, write to: Isotopes Division, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, Tennessee.

Meetings

Forthcoming Events

October

9–12. Water Pollution Control Federation, 34th annual, Milwaukee, Wis. (R. E. Fuhrman, 4435 Wisconsin Ave., NW, Washington 16)

10–12. Nuclear Reactor Chemistry, 2nd conf., and Analytical Chemistry in Nuclear Reactor Technology, 5th conf., Gatlinburg, Tenn. (Oak Ridge National Laboratory, Post Office Box X, Oak Ridge, Tenn.)

10–13. Administration of Research, 15th conf., San Juan, Puerto Rico. (G. F. Anthony, Research Center, Univ. of Puerto Rico, Mayaguez, P.R.)

10–20. International Committee for Biological Control, Tunis. (P. Grison, Laboratoire de Biocentro et de Lutte Biologique, La Miniere, par Versailles (S. et O. Rat) France)

11–14. Tau Beta Pi Assoc., Cincinnati, Ohio. (H. H. Nagel, Univ. of Tennessee, Knoxville)

11–14. Western Inst. on Epilepsy, 13th annual conf., San Antonio, Tex. (F. Risch, 3097 Manning Ave., Los Angeles, Calif.)

12–13. Congress of Neurological Surgeons, New York, N.Y. (E. Weford, 4706 Broadway, Kansas City 12, Mo.)

12–29. Pacific Intern. Trade Fair, 2nd, technical meetings, Lima, Peru. (PITF, P.O. Box 4900, Lima)

15–21. Pan American Congr. of Endocrinology, 5th, Lima, Peru. (M. San Martin, Av. Central 525, San Isidoro, Lima)

16–18. American Soc. of Safety Engineers, Chicago, Ill. (A. C. Blackman, 5 N. Wabash Ave., Chicago 2)

16–18. Entomological Soc. of Canada and Entomological Soc. of Quebec, Quebe, Canada. (L. L. Reed, ESC, Neatby Bldg., Carling Ave., Ottawa, Canada)

18–20. Design of Experiments in Army Research, Development, and Testing, 7th conf. (by invitation only), Fort Monmouth, N.J. (F. G. Dresse, Army Research Office (Durham), Box CM, Duke Station, Durham, N.C.)

18–20. Optical Soc. of America, Los Angeles, Calif. (Miss M. E. Warga, 1155 16 St., NW, Washington 6)

20–21. Indiana Acad. of Science, Terre Haute. (E. D. Weisberg, Dept. of Biology, Indiana Univ., Bloomington)

20–24. American Heart Assoc., annual, Miami Beach, Fla. (AHA, 44 E. 23 St., New York 10)

23–28. Congress of Chemical Engineering, 1st, San Juan, P.R. (R. Munoz, Apartado 47, Estacion de Río Piedras, San Juan, Puerto Rico)

OAK RIDGE NATIONAL LABORATORY

Operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION

742

SCIENCE, VOL. 134
<table>
<thead>
<tr>
<th>Type</th>
<th>Grade</th>
<th>Capacity meq/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEAE</td>
<td>Standard</td>
<td>20</td>
</tr>
<tr>
<td>ECTEOLA</td>
<td>Standard</td>
<td>20</td>
</tr>
<tr>
<td>CM</td>
<td>Standard</td>
<td>20</td>
</tr>
<tr>
<td>DEAE-80</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>LIPIDS</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

These materials produce separations that far exceed what usually can be accomplished alone by ion exchange resins, chromatography, electrophoresis, or column chromatography.

There are several kinds of Selectacell Ion Exchange Celluloses for use in chromatographic columns.

ANION EXCHANGERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Grade</th>
<th>Capacity meq/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEAE</td>
<td>Standard</td>
<td>20</td>
</tr>
<tr>
<td>ECTEOLA</td>
<td>Standard</td>
<td>20</td>
</tr>
<tr>
<td>CM</td>
<td>Standard</td>
<td>20</td>
</tr>
</tbody>
</table>

CATION EXCHANGERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Grade</th>
<th>Capacity meq/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEAE-80</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>LIPIDS</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

FREE Reference Sheets on Selectacell Ion Exchange Celluloses

Send for these new free Selectacell Reference Sheets today — no obligation of course.

| Mail Coupon Today | Carl Schleicher & Schuell Co. Keene, N. H. SSS Selectacell is manufactured by Brown Company and exclusively packaged and distributed for laboratory use by S & S. |

15 SEPTEMBER 1961
6-9. Southern Medical Assoc., Dallas, Tex. (R. F. Butts, 2601 Highland Ave., Birmingham 3, Ala.)
8-11. Geological Soc. of America, Cincinnati, Ohio. (W. Waterfall, American Inst. of Physics, 335 E. 45 St., New York 17)
8-11. Institute of Management Sciences, San Francisco, Calif. (W. Smith, Inst. of Science & Technology, Univ. of Michigan, Ann Arbor)
8-11. Plasma Physics, American Physical Soc., 3rd annual, Colorado Springs, Colo. (F. Ribe, Los Alamos Scientific Laboratory, P.O. Box 1663, Los Alamos, N.M.)
10. Operations Research Soc. of America, 20th, San Francisco. Calif. (P. Stillson, 115 Grove Lane, Walnut Creek, Calif.)
9-12. Pacific Coast Fertility Soc., Palm Springs, Calif., 9th meeting, 909 Hyde St., San Francisco 9, Calif.)
12-17. Bahamas Conf. on Medical and Biological Problems in Space Flight, Nassau, Bahamas. (J. M. Wechsler, P.O. Box 1454, Nassau)
13-17. American Public Health Assoc., 89th annual meeting, New York, N.Y. (APHA, 1790 Broadway, New York)
13-17. Gulf and Caribbean Fisheries Inst., 14th annual, Miami Beach, Fla. (J. B. Higman, Marine Laboratory, Univ. of Miami, 1 Rickenbacker Causeway, Virginia Key, Miami 49)
13-18. European Conf. on the Control of Communicable Eye Diseases, Istanbul, Turkey. (World Health Organization, Palais des Nations, Geneva, Switzerland)
14-16. American Meteorological Soc., Tallahassee, Fla. (Executive Secretary, AMS, 45 Beacon St., Boston 8, Mass.)
14-18. Puerto Rico Medical Assoc., Santurce. (J. A. Sanchez, P.O. Box 9111, Santurce)
16-18. American Psychiatric Assoc., Milwaukee, Wis. (J. D. McGucken, 756 N. Milwaukee St., Milwaukee 2)
16-18. Etiology of Myocardial Infarction, intern. symp. (by invitation). Detroit, Mich. (T. N. James, Section on Cardiovascular Research, Henry Ford Hospital, Detroit)
16-18. Southern Thoracic Surgical Assoc., Memphis, Tenn. (H. H. Seiler, 517 Bayshore Blvd., Tampa 6, Fla.)
17-18. Southern Societies for Pediatric Research, Atlanta, Ga. (W. G. Thurman, Dept. of Pediatrics, Emory Univ. School of Medicine, Atlanta)
17-31. National Soc. for Crippled Children and Adults, annual conv., Denver, Colo. (NSCCA, 2023 W. Ogden Ave., Chicago 12, Ill.)
19-22. International College of Surgeons, Western regional, San Francisco, Calif. (W. F. James, 1516 Lake Shore Drive, Chicago 10, Ill.)
22-27. Automation and Instrumentation, 5th conf., Milan, Italy. (Fedazione della Societa Scientifica Tecniche di Milano, via S. Tomaso 3, Milan)
22-27. J. Radioisotopes in Animal Biology and the Medical Sciences, conf., Mexico City, D.F. (International Atomic Energy Agency, 11 Kärntner Ring, Vienna 1, Austria)
23-25. Central Assoc. of Science and Mathematics Teachers, Chicago, Ill. (J. Kennedy, Indiana State Teachers College, Terre Haute)
25-26. American College of Chest Physicians, annual interim session, Denver, Colo. (M. E. Kornfeld, ACC, 112 E. Chestnut St., Chicago 11, Ill.)
26-1. Radiological Soc. of North America, annual, Chicago, Ill. (R. P. Barden, 713 E. Genesee St., Syracuse 2, N.Y.)
27-29. American Soc. of Hematology, annual, Los Angeles, Calif. (J. W. Reubuck, ASH, Henry Ford Hospital, Detroit 2, Mich.)
27-30. Entomological Soc. of America, Miami, Fla. (R. H. Nelson, 4603 Calvert Rd., College Park, Md.)