Gordon Jacobs, an Electronics Laboratory communications engineer, recently reported that a ruby laser burst system using 360 watts of primary power can provide a range of 10,000 nautical miles at 400 bits per second. In an experimental system development at the Laboratory a KDP crystal was used to modulate the light source frequencies up to 200 mc. The optical receiver utilized a multiplier phototube. Mr. Jacobs stated that future improvements in light sources offer an enormous potential for optical communications. A considerable technical effort is required in many areas: e.g. atmospheric propagation, wide-band modulation and wide-band detection.

A SCHEME ... has been proposed by Dr. Frank Dickey, radar consultant with the Laboratory. He suggested "a powerful earth-based transmitter be employed to beam microwave energy at the moon. The interaction of incident and reflected energy near the lunar surface would create a stationary radiowave pattern... which would be sensed by an incoming spacecraft. This new technique can provide a simple, lightweight device capable of performing all sensory functions needed to achieve soft lunar landings." (First reported at IRE Convention in March 1961, theoretical work is continuing on this concept.)

THE Electronics Laboratory engineers, headed by Jerome J. Suran, Manager of the Electronic Applications Laboratory, developed this device to control the beat of the human heart. It is the first surgically implantable unit whose rate can be adjusted by the patient to accommodate strenuous activities, such as stair-climbing. Its successful use was described in the May '61 issue of LIFE MAGAZINE. A continuing program of cooperation with medical researchers is now part of the Laboratory effort. It includes work on mechanisms that will stimulate other muscles which have suffered deterioration (from paralytic disease or injury) and the development of new diagnostic techniques.

Gordon Jacobs, an Electronics Laboratory communications engineer, recently reported that a ruby laser burst system using 360 watts of primary power can provide a range of 10,000 nautical miles at 400 bits per second. In an experimental system development at the Laboratory a KDP crystal was used to modulate the light source frequencies up to 200 mc. The optical receiver utilized a multiplier phototube. Mr. Jacobs stated that future improvements in light sources offer an enormous potential for optical communications. A considerable technical effort is required in many areas: e.g. atmospheric propagation, wide-band modulation and wide-band detection.

A SCHEME ... has been proposed by Dr. Frank Dickey, radar consultant with the Laboratory. He suggested "a powerful earth-based transmitter be employed to beam microwave energy at the moon. The interaction of incident and reflected energy near the lunar surface would create a stationary radiowave pattern...which would be sensed by an incoming spacecraft. This new technique can provide a simple, lightweight device capable of performing all sensory functions needed to achieve soft lunar landings." (First reported at IRE Convention in March 1961, theoretical work is continuing on this concept.)

Investigative employees at General Electric’s Electronics Laboratory believe that no technology is so “remote” that it may not one day contribute to advances in one of the many diverse areas conveniently labeled “electronics” today. The “oneness” of all science is a matter of conviction at the Laboratory, to both Staff Members and Management. The result is an enriching collaboration among individuals trained in many fields, from biochemistry to microwaves, from molecular physics to metallurgy, from geophysics to thermionics. Indicative of the breadth of the Laboratory’s interests and accomplishments are the above abstracts on recent investigations by members of the staff. Some of this work is now being carried into advance development stages. Scientists and engineers (with PhD or MS) attracted by an opportunity to pursue investigations in a stimulating intellectual climate with colleagues from many fields are invited to inquire about opportunities to explore: NEW SOLID STATE DEVICES; APPLICATIONS TO COMPUTER TECHNOLOGY; ADVANCED MICROELECTRONIC CIRCUITRY; MAGNETIC THIN FILMS; SUPERCONDUCTIVE FILMS; NEW APPROACHES TO ELECTRONIC SIGNAL PROCESSING; NEW DATA PROCESSING TECHNIQUES, USING THEORIES OF AUTOMATA; ADAPTIVE SYSTEMS AND OTHERS; PHYSICAL PHENOMENA WITH POTENTIAL FOR MICROWAVE AND COHERENT OPTICAL DEVICES; NEW APPROACHES TO CONTROL SYSTEMS USING NON-LINEAR, ADAPTIVE AND OTHER TECHNIQUES; ORGANIC AND INORGANIC CHEMISTRY: NEW MATERIALS AND PROCESSES (BS degree acceptable); ADVANCED DEVELOPMENT IN HIGH POWER AND DIGITAL SOLID STATE CIRCUITRY; ADVANCED DEVELOPMENT IN MEASUREMENT INSTRUMENTATION. Write in confidence to: Mr. Richard J. Sullivan, Dept. 74-T, General Electric’s Electronics Laboratory, Electronics Park, Syracuse, New York.

“An Equal Opportunity Employer.”