The Packard Model 830 Tri-Carb® Gas Fraction Collector enables quantitative collection of the individual organic components in a gas chromatographic effluent stream. It is suitable for use with any gas chromatograph using a non-destructive mass detector. Precise measurement of the radioactivity in component peaks can be made after collection.

An 8" diameter turntable holds up to 50 Tri-Carb Cartridges, each packed with silicone-coated scintillation crystals. Vapors leaving the gas chromatography mass detector pass through the heated gas injection nozzle of the collector and condense on the coated surfaces of the scintillation crystals. Cartridges may be changed by actuating a pushbutton or automatically according to a preset time. Changing takes only a fraction of a second.

After sample collection, the cartridges are counted in an Automatic Tri-Carb Liquid Scintillation Spectrometer. No sample preparation is necessary.

Counting efficiency for C¹⁴ is over 50% and backgrounds are extremely low. Consequently, even peaks with very low activity can be accurately measured in short counting periods.

For more information call your local Packard Sales Engineer—or write for descriptive literature.

Analysis of methyl esters labeled with carbon-14. The curves represent the output of a mass detector. The white vertical lines represent the times at which the fraction collector was actuated. The bar graph represents the radioactivity in each fraction in counts per minute, determined by a 10-minute count. (Ref.: Journal of Lipid Research 3, No. 1, 44, January, 1962)
enzyme kinetics, the molecular basis of vision, and photosynthesis), Thermodynamics and Transport Systems (thermodynamics, diffusion and active transport, and information theory), and Specialized Instrumentation (optical, spectroscopic, and isotopic instruments, and computers). Each chapter concludes with a short list of references, and each main section includes a set of discussion questions.

Ackerman’s style is concise and clear, and the necessary biological (and biochemical) concepts and terminology are explained and defined as they are introduced. The book is well produced and appropriately illustrated. It should be extremely useful as the textbook for a course in general biophysics and, to more advanced workers, as a source for independent reading or reference. To the physicist or the engineer, it offers a pleasant opportunity to acquaint himself with those biological or bio-chemical fields in which his own techniques have been employed with success.

Biophysics: Concepts and Mechanisms is intended for students of biology and medicine who are without a background in either calculus or physics, and both subjects are introduced in a somewhat abbreviated fashion. The topics treated here are quite similar to those treated by Ackerman, but their treatment is necessarily less detailed. A set of problems and a list of references are provided at the end of each chapter. The style is informal and at times even whimsical.

An unfortunate number of errors, both of fact and of typography, remain in the text—the following are a small sample: “Because they carry more energy than photons in the visible region, the photons in the ultraviolet region are less likely to be absorbed” (p. 92); “Punctures [in the lung], called air embolism ...” (p. 33); ... [the ion] is deflected there by the magnetic field, by an amount determined by the weight of the flying particle ...” (p. 119); “If waves are diverging, or being dissipated or scattered, the important general rule, called the 'inverse square law,' is obeyed” (p. 52). In other instances imprecision detracts from the presentation: “... in destroying the bacteria, escherichia coli and bacteria coli, in foods or in our water supply. Each of these is killed by about 14 x 10^-4 ergs per bacterium” (p. 93); “The heart is a pulse pump. It distends ... closes its inlet valves, and contracts, forcing the blood out through the aorta” (p. 35).

Although this book is written for a deserving audience and its subject matter is well chosen, the many errors make it impossible to recommend the book in its present form.

M. S. Blois

Biophysics Laboratory, Stanford University

Note

Water Maps

Water Atlas of the United States (Water Information Center, Port Washington, N.Y., 1962. 7 pp. + 40 plates. $6.95), by David W. Miller, James J. Geraghty, and Robert S. Collins, contains 40 well-prepared maps; all are on a uniform scale of 1:16,500,000 (260 miles per inch).

The maps contain data on physiographic provinces, average annual precipitation, areas of cloud seeding operations, mean annual evaporation, average temperature of groundwater, strontium concentration in streams, and the amount of water used for various purposes. Each map is accompanied by a few paragraphs of explanatory text.

Professional workers in the field will find nothing in the atlas that they do not already have in their libraries.

Nineteen maps are adapted from publications of the U.S. Geological Survey and eight from books sponsored by Resources for the Future. The layman can easily be misled by the apparent simplicity of the extremely small-scale maps which cannot represent accurately the complex areal patterns of the various factors, especially in the western United States. The brief descriptions are overly generalized and superficial.

The atlas does not live up to its advance billings as “a single authoritative reference book; nor does it provide “answers to almost every conceivable question on water.” It is clearly a commercial venture which falls far short of meeting the need for a detailed and comprehensive national water atlas.

Ray K. Linsley

Department of Civil Engineering, Stanford University

New Books

Biological and Medical Sciences

Versatility and flexibility of the Victoreen Educator Series radioisotope counting kits make them ideal for the highly specialized needs of instruction. Kits are comprised of proven Victoreen components and accessories to simplify teaching and demonstration right from basic fundamentals through advanced studies.

Advanced Educator Kit is used for G-M, scintillation and proportional counting applications. It is ideal for quantitating the activity of natural and artificial radionuclides in prepared environmental samples, foodstuffs, biota, biological specimens, and health physics contamination studies. Basic Educator Kit is used for radioisotope counting with Geiger, or with optional extra scintillation probe. Accessories include an educational source set, beta and gamma standards, absorbers, planchets, health physics slide rule, etc.

From the classroom . . . to the laboratory . . . to the largest research or industrial nuclear establishment—Victoreen is the most trusted name in precision nuclear instrumentation.
A new concept in electron microscope design!

This defines the Tronscope™ 80 electron microscope; an entirely different type of electron microscope. Bendix/Akashi engineers realized that the productivity of conventional electron microscopes could not be further improved without basic changes in concept. And improvement was necessary! Conventional microscopes had to be operated by a patient, skilled microscopist. Resolution was a function of his ability. Instrument preparation, lens alignment and other adjustments required a great deal of valuable operating time.

The Tronscope 80 has been engineered to deliver highest quality results at a level of productivity unequalled with conventional microscope design. It is unconditionally guaranteed to perform continuously at 12 Å resolution. Nine-ten Å readily obtainable. How? All of the electromagnetic lenses have been permanently aligned in the column, thereby eliminating the time-consuming alignment procedure. A cored-oxide cathode in combination with a tele-focus electron gun requires no condenser lens.

A built-in aperture cleaning system has been devised for removing aperture contamination that affects resolution. The microscope image is interrupted less than one minute for the entire cleaning cycle. In addition, a new method of high voltage stabilization has been incorporated.

If you would like to learn more about all models of the Bendix/Akashi Tronscope, which incorporate all these new concepts, please write Dept. E-4, 3625 Hauck Rd., Cincinnati 41, Ohio.
Meetings

Autoregulation of Blood Flow

The intrinsic ability of an organ to maintain the rate of its own blood flow relatively constant, when the arterial driving pressure for flow is changed, has been a controversial area of research, and recently was the subject of a research workshop involving experimental demonstrations, laboratory discussions, and formalized discussions. During a 5-day period, 26–30 November 1962, 14 representatives from the majority of American laboratories working in this field convened to discuss their findings. The first two days were spent with William Waugh (University of Kentucky); the latter three days were spent with Francis Haddy and Lerner Hinshaw (University of Oklahoma).

Six of the visiting participants brought their own apparatus and demonstrated their experimental techniques and results in the host laboratories. The experiments included ten different preparations which involved the circulation of the dog kidney, brain, intestine, skeletal muscle, and foreleg. In most instances the spectator investigators extended the original experiment to elucidate certain points of particular interest to them, and in many respects this was the most beneficial part of the tour.

Some physiologists have not observed the phenomenon of autoregulation of blood flow; while those who have observed it have not agreed on a probable cause. It seems possible that the wide variability in experimental results is due to the variety of experimental techniques employed.

W. H. Waugh (Kentucky) studied autoregulation in the isolated kidney with blood perfused by a donor animal. Small-vein pressures were measured by a catheter passed retrograde into the venous system. With large changes in arterial pressure, there were only small changes in small-vein pressure. Dissection of the kidney showed the catheter tip had not passed beyond the renal calyces. Data from other experiments in which the catheter tip was found in arcuate or interlobular veins showed similar changes in small-vein pressure. Waugh also reviewed his previous work which suggests that an active myogenic vascular response to the level of transmural pressure is the cause of renal circula-
tory autoregulation. G. Grupp (Cincinnati), in addition to Waugh, also stressed the influence of vasoactive agents on autoregulation of renal flow. He reviewed his work (i) on the relatively constant rate of renal oxygen consumption and heat production with changes in renal blood flow and (ii) on the shift from aerobic to anaerobic renal metabolism with short-term vascular occlusion.

H. E. Schmid (Bowman-Gray), using an electromagnetic flowmeter, studied flow regulation with acute changes in arterial pressure in the in situ, non-cannulated kidney. He also reported the presence of autoregulation after kidney decapsulation. A blood-perfused, isolated kidney technique was described which showed that the autoregulatory resistance change can be localized to the specific end-arterial vasculature of arteries in which pressure changes occur (R. B. Harvey, Minnesota). Additional reviews on renal circulatory autoregulation were presented by A. R. Koch (Washington) and F. J. Haddy (Oklahoma). Koch presented an analysis of the effect of varying the tonicity of the arterial blood and of the effect of osmotic diuresis on renal vascular resistance; and Haddy found that elevated arterial CO2 tension did not abolish autoregulation in the kidney.

Experiments on the isolated kidney perfused from a heart-lung preparation showed changes in renal tissue pressure were largely responsible for the major resistance changes underlying renal autoregulation (L. B. Hinshaw, Oklahoma). Deep-venous pressure rose considerably with large elevations in arterial pressure, thus favoring the tissue-pressure concept. Identical deep-venous pressures were also measured by Waugh, who inserted a venous catheter of much smaller bore into the same preparation.

Recent studies of renal blood flow and glomerular filtration rate showed indirect evidence that the chief resistance changes underlying renal circulatory autoregulation are located in the preglomerular vasculature and that there is no significant redistribution of cortical and medullary blood flow with autoregulation (E. E. Selkurt).

In studies of cerebral blood flow by C. Rapela (Bowman-Gray) a blood pump was interposed in the arterial path and sometimes reduced or abolished cerebral circulatory autoregulation. However, hypercapnia is exceedingly effective in abolishing autoreg-

Vac-Evap®
(A high speed vacuum evaporator from Bendix)
- 3½ minutes to 1 x 10⁻⁴ mm Hg.
- 10 minutes to 5 x 10⁻⁵ mm Hg.
- Single lever vacuum control.
- Hinged bell jar (8½" diameter) with protective cover.
- 2 extra feed-through ports for external vacuum connections.
- Specimen protecting shutters controlled from outside vacuum.
- Compact design—takes less than 3½ square feet of floor space. 36 inches high.

All materials, tools, and accessories supplied, including carbon evaporation unit.

For information, write us at 3625 Hauck Road, Cincinnati 41, Ohio.
prove to yourself the advantages of using Ainsworth Balances with a trial run in your own laboratory

on the type 10 or type 12 with these distinctive features:
compact size
low price
accurate substitution weighing
speed
exclusive taring method
all metal case
patented compensated beam
“add weight” and “remove weight” signals
Ainsworth quality dependable service

You name the date...we’ll demonstrate

<table>
<thead>
<tr>
<th></th>
<th>TYPE 10</th>
<th>TYPE 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPACITY</td>
<td>160 gr.</td>
<td>80 gr.</td>
</tr>
<tr>
<td>TOTAL LOAD</td>
<td>220 gr.</td>
<td>120 gr.</td>
</tr>
<tr>
<td>SENSITIVITY</td>
<td>0.1 mg</td>
<td>0.01 mg</td>
</tr>
<tr>
<td>READABILITY BY ESTIMATION</td>
<td>0.05 mg</td>
<td>0.005 mg</td>
</tr>
<tr>
<td>REPRODUCIBILITY</td>
<td>±0.03 mg</td>
<td>±0.01 mg</td>
</tr>
</tbody>
</table>

R. M. Berne (Western Reserve) described the autoregulation of coronary blood flow and its absence in the fibrillating heart. He also suggested that such blood flow is controlled locally by myocardial oxygen tension, and this control appears mediated in part by the release of adenosine. R. D. Jones (St. Luke’s Hospital, Cleveland) and Berne demonstrated intense circulatory autoregulation in the isolated thigh muscles which is sometimes impaired by incorporation of an arterial blood pump.

Additional demonstrations included preparations of (i) the isolated gastrocnemius-plantaris muscular vascular bed (W. N. Staingby, Florida), (ii) the heart-lung-foreleg (Hinshaw), and (iii) the isolated intestinal loop (P. C. Johnson and K. M. Hanson, Indiana). The elevation of arterial pressure caused a large increase in blood flow followed by a slow return toward the control level in the isolated gastrocnemius-plantaris muscular bed. In this preparation the steady state vascular resistance decreased with arterial pressure elevation. However, other experiments have shown a direct relation between arterial pressure and vascular resistance. In Hinshaw’s heart-lung-foreleg preparation, and in Haddy’s dog foreleg preparation no autoregulation of foreleg blood flow was observed. The relative paucity of skeletal muscle vasculature in the dog foreleg, compared to foreleg skin and paw, was pointed out.

The last day of the conference was concerned with three main topics.

1) The group discussed criteria which should be applied to determine whether changes in tissue pressure are responsible for autoregulation. In an organ where the major resistance changes are due to generalized tissue-pressure changes, the greatest resistance changes should be found in those vessels most sensitive to collapse, such as the veins, while the pre-venous resistance will tend to remain constant. This type of autoregulation should be accompanied by sizable changes in interstitial pressure or lateral deep-vein pressure.

2) The group considered the expected behavior of a preparation ex-
hibiting myogenic autoregulation, a type which depends upon vascular transmural pressure. This response should exist only in vessels possessing active smooth muscle tone, or might be evoked in previously atonic vessels if they are sufficiently reactive to the stimulus, and should be abolished by any agent which paralyzes vascular smooth muscle. Such autoregulation may occur in the absence of a parallel change in tissue pressure, venous resistance, or organ weight. When venous pressure is elevated, total vascular resistance should increase except where capillary pressure is high (for example, in the kidney), or where tissue pressure increases substantially.

3) The group considered metabolic autoregulation. Generally, resistance is dependent on blood flow in a manner consistent with maintenance of an adequate nutrient supply. In comparing it to myogenic autoregulation it is similar in that it requires active smooth muscle tone and may be seen in the absence of parallel changes in tissue pressure, venous resistance, or organ weight, and dissimilar in that vascular resistance to blood flow should decrease with elevation of venous pressure.

Finally, the group discussed further experiments which should be performed to determine the nature of autoregulation demonstrated in the various organs.

The workshop was a most useful method to the participants in trying to resolve individual differences and in determining the areas most likely to be fruitful in this research field. It was generously supported by a grant (H-7124) to one of us (P.C.J.) from the National Heart Institute.

PAUL C. JOHNSON
Department of Physiology,
Indiana University, Indianapolis
WILLIAM H. WAUGH
Department of Medicine,
University of Kentucky, Lexington
LENNER B. HINSHAW
Department of Physiology,
University of Oklahoma,
Oklahoma City

Forthcoming Events

May

RUN A DAY'S SULFUR DETERMINATIONS BEFORE MORNING COFFEE BREAK WITH FISHER'S NEW INDUCTION SULFUR APPARATUS In less time than it takes to bring a conventional hot-tube furnace up to temperature, you can run 10 accurate sulfur determinations with the new Induction Sulfur Apparatus—and keep right on running them at the rate of 10 an hour. You'll finish a day's usual sulfur work by midmorning. The new apparatus warms up in 30 seconds, is simple to operate, can handle up to 2.5 grams of ferrous or nonferrous metals. Connect it to a Fisher Model 36 Titrimeter® and the entire analysis is automatic. Full facts in free Bulletin 10-466. Write for it and ask about acquiring the Induction Sulfur Apparatus through the Fisher Financing Plan. Fisher Scientific Company, 139 Fisher Building, Pittsburgh 19, Pa.

FISHER SCIENTIFIC
World's Largest Manufacturer-Distributor of Laboratory Appliances & Reagent Chemicals
Boston • Chicago • Fort Worth • Houston • New York • Odessa, Tex. • Philadelphia
Pittsburgh • St. Louis • Union, N. J. • Washington • Edmonton • Montreal • Toronto
This world-famous embedding medium is now better than ever.

- Excellent ribbonability
- Freedom from crumbling
- Doesn't distort or crinkle tissue
- Sections adhere readily to slide
- Inert to histochimicals
- Granular, for easier handling, rapid melting
- Four melting ranges 1 lb. and 25 lb. packages.

Write for data.

Matheson, Coleman & Bell
Division of the Matheson Company, Inc.
Norwood (Cincinnati) Ohio, E. Rutherford, N. J.

NEW DOUBLE DUTY INSTRUMENT

AGITHERM

ONLY $67.50

Hot Plate—
Magnetic Stirrer

New low cost plus advanced design features

Now you can heat and stir simultaneously with WACO AGITHERM. Heavy-duty individual controls allow use of either stirrer or hot plate independently when desired.

The 500 watt hotplate can be set thermostatically at any temperature up to 600° F. Pilot light indicates when heat is on. The perforated stainless steel case assures cool operation of motor. Compact design, 6¼” diameter by 5” high.

No. F-84500 Agitherm Stirfer Hot Plate, complete with one each glass and Teflon covered stirring bars ¾” x 1¼”, for 115 volt, 60 cycle, A. C. $67.50.

ORDER NOW

LABORATORY SUPPLIES AND CHEMICALS
WILKENS-ANDERSON CO.
4523 W. DIVISION ST., CHICAGO 31, ILLINOIS

Giffilman, School of Science, Oregon State Univ., Corvallis)
12–14. Excerpta Medica Foundation, Amsterdam, Netherlands. (Headquarters. 111, Kalverstraat, Amsterdam)
13–14. National Assoc. of Boards of Pharmacy, Miami Beach, Fla. (F. T. Mahaffey, 77 W. Washington St., Chicago 2, Ill.)
13–17. American Soc. of Civil Engineers, Milwaukee, Wis. (W. H. Wisely, ASCE, 345 E. 47 St., New York 17)
13–18. Condensation Nuclei, 5th intern. symp., Clermond-Ferrand and Toulouse, France. (H. Dessens, Laboratoire de Physique du Globe, Faculté des Sciences, Univ. de Toulouse, Toulouse)
15–18. Acoustical Soc. of America, New York, N.Y. (W. Waterfall, American Inst. of Physics, 335 E. 45 St., New York 17)
16–17. Aromatic Biosynthesis and Metabolism, Saskatoon, Canada. (A. J. Finlayson, Prairie Regional Laboratory, National Research Council, Saskatoon)
16–18. International Assoc. for BronchoLOGY, 13th congr., Zurich, Switzerland. (E. Steinmann, Tödstr. 36, Zurich 2)
16–18. Diabetology, 4th, Paris, France. (M. Rathy, Hotel-Dieu, Place du Parvis Notre Dame, Paris 4)
18. Southern California Academy of Sciences, Los Angeles. (G. Sibley, Los Angeles County Museum, 900 Exposition Blvd., Los Angeles 7)
20–22. Institute of Radio Engineers, Professional Group on Microwave Theory and Techniques, symp., Santa Monica, Calif. (I. Kaufman, Space Technology Laboratories, Inc., 1 Space Park, Redondo Beach, Calif.)
20–23. Spectroscopy, 14th annual mid-
American symp., Chicago, Ill. (J. E. Fortrette, Roy C. Ingersoll Research Center, Wolf and Algonquin Rds., Des Plaines, Ill.)
23–24. Radiosensitive and Radioprotective Drugs, 1st Intern. symp., Milan, Italy. (R. Paolelli, Inst. of Pharmacology, Univ. of Milan, Via A. Sarto 21, Milan)
26–29. Institute of Food Technologists, Detroit, Mich. (C. L. Willey, Inst. of Food Technologists, 176 W. Adams St., Chicago 3, Ill.)
27. Operations Research Soc. of America, Transportation Science Section, Cleveland, Ohio. (L. C. Edie, Port of New York Authority, 111 Eight Ave., New York 11)
27–29. Canadian Nuclear Assoc., 2nd intern. conf., Montreal, Canada. (CNA, 19 Richmond St., W., Toronto 1, Canada)

(See 29 March issue for comprehensive list)

WHY SELECT ACE FIBER GLASS SINTERED FILTERS?

Quality and Greater Abrasion Resistance. Ace filters, the first American made sintered glass filters, feature a glass fiber structure, more abrasion resistant because it is fused together on a larger area. Particles do not detach from the filter body as easily as spherical granules. The shock and chemical attack resistance of glass is unimpaired as the Ace fiber glass sintered filter is made entirely of glass. You are assured of Ace Glass quality; each filter plate is individually tested for porosity and hardness.

Selection and Economy. Ace fiber glass sintered filters are economically priced. For instance, the Filter Funnel (Cat. #7305 in the 20 ml. cap. with 20 mm. disc), shown in photograph above, is listed at $3.20. Ace fiber glass sintered filters have been incorporated into a wide variety of Ace glassware described in our new filterware brochure. Get it for your files!

Write Dept. S for your copy of Filterware Brochure No. 6050.
LAUDA low temperature baths and circulators are available in four table-model designs and over a dozen console versions—for internal tempering or external circulation.

The table-model Kryomats now feature ¼ or ½ h.p. Tecumseh low-temperature condensers for control to -20 or -30°C. Console models are available in cascade designs for tempering or heat exchange applications at temperatures down to -100°C.

for all your temperature control problems contact:

Lauda Instruments, Inc.
P.O. Box 422 Great Neck, N.Y.
for Laboratory Testing
STAINLESS STEEL INTERIOR
forced convection OVENS

Model VU-5-33
Max. temp. 950° F.

Price $330.

A compact oven suited to a wide range of laboratory uses utilizing stainless steel interiors to simplify maintenance. Rugged construction and proper design of the VU-5-33 oven offers easy operation with long maintenance free life. Forced air convection heat and the Dispatch balanced air flow plus automatic control provides the oven that modern laboratories require. Models for 110V-220V. Write for bulletin No. 203-10P.

FEATURES

- 3 heat switch to control heater intensity.
- recessed control panel for access to instruments and easy visibility.
- Work chamber uniformly assured by Despatch duct design and high velocity fan.
- Automatic thermostat.
- Stainless steel interior. Refrigerator type latch and strike, chrome plated oversize hinges.
- Heater positioned away from oven base eliminates shorts from dripping and radiation.
- Fan motor rubber mounted, insulated from oven heat.
- Dimension (inside)—20” x 16” x 18”. Dimension (outside)—28” wide x 25” deep x 41” high.

Send a sample of your chart for quotation and additional data, or call us for complete details.

ROYSON ENGINEERING COMPANY
HATBORO, PA. Phone: (215) OSborne 5-2800

DESPATCH
OVEN CO.
619 S. E. 8th St., Minneapolis 14, Minn.

Cages and Laboratory Equipment

BETTER DESIGNED . . . BETTER MADE . . . BY EXPERIENCED METAL MANUFACTURING CRAFTSMEN . . . MANUFACTURED IN ONE OF AMERICA’S NEWEST, BETTER EQUIPPED PLANTS . . . with THE STAFF, THE SKILL, THE STOCKS TO ASSURE OUTSTANDING SERVICE — ON TIME DELIVERIES.

This is why researchers in foremost hospitals, schools and laboratories, coast to coast, demand cages and equipment made by Porter-Mathews.

CAGES . . . mice to monkeys and chickens . . . and RACKS of stainless steel, galvanized and aluminum.

LABORATORY EQUIPMENT . . . restrainers, bleeders, sterilizing cases, animal operating, treatment and autopsy tables, food feeders, water tubes of stainless steel.

DELUXE AND CUSTOM MADE

Why not visit Porter-Mathews in Princeton?

PORTER MATHEWS COMPANY, INC.
U. S. Route #1, Princeton 1, New Jersey • 609-921-2550
in the direction of giving a closer scrutiny" implies that the goal is not yet reached. The point of diminishing returns, where the advantages of having funds available for medical research is outweighed by the time consumed in securing and administering them, may be close.

An aspect of the reports quoted by Congressman Fountain that has received inadequate recognition from scientists is the eloquent statements by the leaders of the National Institutes of Health in support of the liberal policies that they have been following. Clearly, NIH cannot support this point of view indefinitely against the desires of Congress, on whom they are, after all, dependent for funds. Scientists outside the government must also help in convincing Congress and the people that there are at least two sides to this question. The issue has come up initially with respect to support of the health sciences, but it may not stop there.

BRIAN MACMAHON

Department of Epidemiology, School of Public Health, Harvard University

Creativity and the Indigent Student

It is distressing to see... [you] give support to the archaic idea that a hungry student is a superior student [Science 139, 79 (11 Jan. 1963)]. Some of the penetrating minds of the past and present may have been starved during their formative period, but to assign a cause and effect relationship is absurd. The same reasoning would suggest that we decrease by 50 percent the pay of all present scientists so that they will be twice as creative, thereby eliminating the need for a crash program.

Freed from financial pressure the "man of moderate endowment may show flashes of genius." Why dilute his academic struggles with monetary adversity?

WILTON H. BUNCH

Crow Indian Hospital, Crow Agency, Montana

... Not all can be Enrico Fermi, but any reasonably competent Ph.D. can add to the sum of knowledge from which the Enrico Fermis draw. If recent Ph.D. theses are pedestrian, is it the fault of the Ph.D. candidate or of the professor and system under whom the work is done?

Furthermore, poverty at the graduate school level is not an automatic virtue. Probably lack of financial assistance has hindered more scholars, potential and actual, than reasonably adequate stipends could possibly do.

GUY W. MCKEE

127 Orchard Road,
State College, Pennsylvania

... [the] report [of the President's Science Advisory Committee entitled "Meeting Manpower Needs in Science and Technology"] does not imply "that scientists, like nuts and bolts, are interchangeable and can be mass produced." It does imply that graduate schools will assert their traditional selectivity and accept only those students who are capable of quality academic performance; that science majors are not continuing their education because of financial difficulties; and that they can complete their programs earlier and do more creative work when devoting full time to educational pursuits than when working at odd jobs like cleaning pigeon cages.

The implementation of this document may not produce enough scientists—only because it doesn't start early enough!... To really increase the number of graduate students we must identify and encourage gifted youngsters in the secondary school—probably even more effectively in the elementary school. There are many studies to substantiate the fact that interest in science is "killed" or "kindled" early.

GLADYS S. KLEINMAN

Rutgers University, New Brunswick, New Jersey

... I have noticed that a relationship exists between the amount of expensive laboratory equipment and the ingenuity with which problems are solved and techniques developed. A laboratory in the early stages of growth, and short of money for equipment, develops a high proportion of new information through improvisation. As the physical plant takes on more elaborate equipment, experimental design more often is set up around the instrumentation than around the problem to be solved.

HUGH H. HOTSON

Maritime Corporation, Seattle, Washington

... The increasing formalization of our educational processes stifles that type of creative mind that might be
EIGHT MORE NEW CARBON-14 LABELLED COMPOUNDS

Radiochemical purities 97% to 100%. Specific activity ranges shown in italics.

\(\Delta^4 \)-Androstene-3, 17-dione-4-C-14 [benzene solution]
$735/500 \mu$ $100/50 \mu$

Cholesteryl linoleate-1-C-14 [benzene solution]
$440/500 \mu$ $60/50 \mu$

Cholesteryl oleate-1-C-14 [benzene solution]
$400/500 \mu$ $55/50 \mu$

Cholesteryl-4-C-14 oleate [benzene solution]
$885/500 \mu$ $120/50 \mu$

Cholesteryl-4-C-14 palmitate [benzene solution]
$755/500 \mu$ $105/50 \mu$

DL-Citric-1, 5-C-14 acid monohydrate
$255/500 \mu$ $35/50 \mu$

Glycer-1-C-14 tripalmitate
$580/500 \mu$ $85/50 \mu$

Maltotriose-14 (U) 100-250 mc/mM
$255/500 \mu$ $35/50 \mu$

These new compounds do not appear in our recently published C-14 schedule. Ask for Radiochemical Bulletins listing these and many other newly available C-14, Tritium, P-32, S-35, and Cl-36 labelled compounds. Individual product schedules are also available.

All prices F.O.B. destination. All shipments sent via prepaid Air Express. Requests for custom preparations are invited.

Presented of Papers

All scientists (and indeed nonscientists too) are aware that talks at professional meetings should be concise, lucid, and held to the allotted time. All are equally aware of how short we fall of this goal. Too often talks are rambling, confused, slow in getting underway, and then rushed and garbled as the speaker runs out of time. All this could be avoided if it were required that each speaker present the chairman of his session with a magnetic tape recording of his talk for playback over the hall's public address system. The author would sit on the platform, signal for slides at the right time, and be prepared to field questions at the end. He would have adjusted his talk to the proper length at home (or else the chairman could reject it) and he would have had to listen to himself, the salutary effect of which would be incalculable.

M. A. Van Dilla
Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico

Missing Links in Computer Intelligence

The paper by Ulric Neisser on “The imitation of man by machine” [Science 139, 193 (18 Jan. 1963)] describes three characteristics of human thought which are absent from machine programs. I would like to add a fourth characteristic which is, perhaps, the most important one. This is the property of “consciousness,” the ability to be aware of the stimuli coming to us from our sense organs, and of the thoughts circulating in our own nerv-
ous systems—and to be conscious of the fact that we are conscious.

While Neisser touches on this matter in his discussion, I believe that the property of “consciousness” is worth emphasizing.

Conceivably a computer could be programmed to give emotionlike responses, or to operate with a multiplicity of motivations. The central question here is whether a computer could be built which would be aware of its emotions, motivations, and the world around it. While this would appear to be an inconceivable feat (some would say impossible), the fact remains that our own human consciousness is, somehow, the end result of physical interactions taking place within the mechanisms of the body cells. There is no a priori reason for assuming that these operations cannot be performed by man-made circuits (although the complexity may make it impractical).

Present-day computers think unconsciously and compulsively. In the jargon of psychoanalysis, they consist entirely of superego, and are devoid of ego or id. The question of humanlike machines, translated into these terms, becomes: Can we build a computer with an ego?

Milton A. Rothman
James Forrestal Research Center, Princeton, New Jersey

Neisser seems to believe that popular misconceptions about “thinking” machines (they are not capable of “thinking”—even in quotes) are due to a misunderstanding of the nature of human thought. Indubitably! But it is equally due to a misunderstanding of the very nature of machines and machine operation. Even the most sophisticated computing machine cannot do anything it is not programmed to do, although much of the program is now “built in” into the machine and does not have to be spelled out in detail by the programmer.

If a comma was omitted in the program, then what was intended to mean two small adjacent numbers is not two small adjacent numbers but one large number, and the machine reacts accordingly. Every machine is literal without any sense of discrimination, common sense, or humor. It is the obedient servant of man—like the disastrously obedient slaves in fairy tales of the past—and in its very obedience lies the danger, for men do not always wish as wisely and well as an omnipotent master.
Most important in Neisser's article is his brief allusion to the use of computing machines to "make social decisions." Again, the very thought of using machines to "answer" questions of human and moral values, or taste, betrays a—widespread, unfortunately—lack of understanding of the very nature of computing machines, of mathematics, and of logic. These machines are eminently suitable to implement the solution of problems in mathematics and logic for the simple reason that they are built in accordance with such laws. Every circuit is the hardware manifestation of a Boolean-algebra equation.

Therefore a machine can solve any problem that can be expressed as a mathematical equation, which means—at least, in theory (in practice, we sometimes lack proper understanding of the problem or mathematical skill to formulate it)—any problem for which a purely rational solution is possible. Social decisions must never be made on purely rational grounds. They are primarily questions of human and moral values and, let us hope, good taste.

Alice Mary Hilton
New York 21, New York

While Neisser avoids explicit statement of the extreme position that differences between human thought and the functional properties of modern computers are insurmountable, he clearly implies support of that position by his subtitle.

Neisser's arguments do not support a mystical or irrational view of the differences between men and machines. Instead of demonstrating any inviolable distinction between the two, he has pointed the way toward making machines more nearly "human" and hence more useful to humans.

The chief differences, Neisser states, arise from the developmental (and, one might add, even the phylogenetic, historical, and ontogenetic) origins of man. Human thinking is inseparable from other human activities and processes. It "takes place in, and contributes to, a cumulative process of growth and development... . The cumulation of learning is interwoven at every point with inborn maturational sequences." A machine will continue indefinitely to pursue any goal programmed into it (this is perhaps its most inhuman feature); whereas the motivations which govern human thought are complex, subtle, and
Compact, Lightweight
WARBURG APPARATUS

Designed for today's modern lab, the dependable Bronwill Warburg features a unique electrode heating system... there's no lag or overshooting of temperature, and operating temperature is reached in 20-30 minutes. You'll make new temperature settings faster, too, (from 0 to 50°C) with magnetic thermoregulator.

The new Warburg is rotatable through 320°—lets you bring any of 14 double capillary manometers in front for easy reading. Has transparent Plexiglas bath chamber. Compact—only 20½" in diameter; its circular shape conserves vital space on lab bench.

A specially designed unit with 14 built-in spotlights is available for photosynthesis.

WRITE today for complete information on both models.
changing. The computer acquires and retains information in a systematic and controllable fashion; whereas the human thinker "lives willy-nilly in an accumulating context of experiences which he cannot limit even if he would."

The real question is whether or not these differences are so fundamental as to rule out forever the possibility of our building some day a machine that can make rational and useful social decisions. . . .

Samuel C. McLaughlin, Jr.
Institute for Psychological Research,
Tufts University, Medford,
Massachusetts

Ulric Neisser's article brings to mind a remark I was privileged to hear from J. von Neumann during an informal talk on computers given at the Institute for Advanced Study at Princeton, in 1948. A woman in the audience started raising the canonical question, "But, of course, a mere machine can't really think, can it?" For a while he tried to put it off with a good-natured gesture, but she persisted. So he turned to his tormentor and said: "Look here. You insist that there is something a machine cannot do. If you will tell me precisely what it is that a machine cannot do, then I can always make a machine which will do just that."

The full import of this remark may have been lost on the person to whom it was directed, but to others in the audience it answered, in a sudden flash of understanding, many half-formulated questions. There is no limitation at all inherent in the machine; the only limitations on making "machines which think" are our own limitations in not knowing exactly what "thinking" consists of.

Von Neumann's remark applies equally well to all of the alleged differences pointed out by Neisser. I suggest that his arguments, far from establishing any "deep difference between the thinking of men and machines," describes only the present state of ignorance of psychologists concerning what growth, emotion, motivation, creativity, and so forth really are.

This does not mean, as Neisser implies, that it would be desirable to incorporate all these features into machines of the future. For most applications of machines, this would amount to a deliberately built-in unreliability. I could hardly disagree more strongly with the implications of the remark, "If machines really thought as men do, there would be no more reason to fear them than to fear men." It is just the fact that machines do not get confused by emotional factors, do not pursue hidden motives opposed to ours, do not get bored with a lengthy problem, that makes them far safer agents than men for carrying out certain tasks. What we have most to fear in the world today is not machines which lack these "human" features, but men who, unfortunately, have them.

E. T. Jaynes
Department of Physics, Washington University, St. Louis 30, Missouri

My paper was not concerned with the inherent limitations, if any, of machines. I attempted to describe the differences between existing or contemplated computer programs on the one hand, and human thinking on the other. It is true that human thought processes are not well understood, but this seems irrelevant to the accuracy of my description. Jaynes' opinion that emotion and growth are deplorable sources of unreliable seems equally irrelevant.

I would like to comment directly on the remark attributed to von Neumann. It is not necessarily true that a program can be written to carry out any well-specified task. The following counter-examples are due to Oliver G. Selfridge:

The speaker may be asked to make a machine to defeat Botvinnik at chess, or to select the painting (from 100 in a contest) which will be awarded first prize by the judges. He will be unable to make such machines at present, and equally unable to give formal proof that he can ever succeed in doing so. (We do have promising leads for the first of these problems, but success cannot be guaranteed.)

If it be replied that these tasks are not specified "precisely," one may enquire what further precision is required. It will probably appear that the underlying idea of a precise definition is rather like a computer program. In that case the assertion reduces to "If you will tell me how to program a task, I can always do so."

Even the last statement may not be right. It is possible that some tasks, including the simulation of human thought, are so complex that the specifi-
COMPLETE METALWORKING SHOP FOR SMALL PRECISION PARTS!

$13950

Includes motor, vertical column, lathe and drill chucks.

Do your own R&D and model shop machining. Unimat turns, drills, bores, mills, threads, grinds, saws, files, divides, buffs, polishes. Eleven-speed range (900 to 7200 rpm) handles all materials. More than 10,000 in use for scientific, industrial, commercial applications. Write for free product catalog or send $1.00 for illustrated Handbook of Miniature Machining Techniques.

American Edelstaal, Inc.
Dept. B-D, 350 Broadway
New York 13, New York

ways PICKER NUCLEAR can help you...

more for your ratemeter money

Transistorized LABMETER I offers all this for only

$495

9 Scale Ranges to 1,000,000 CPM
7 Time Constants from 0.03 second to 30 seconds
25 mv Input Sensitivity for scintillation detectors with and without preamplifiers and for GM tubes
Aural Monitor which is both a "howler" and a "clicker"
1600 v High Voltage Supply with excellent regulation
± 1% Recorder Output Accuracy

for details call any local Picker X-Ray office
(see 'phone book') or write
Picker X-Ray Corporation, White Plains, New York

Simple...or Complex

Protect your valuable precision instruments with Honeywell MODU-MOUNT* CABINETS

Versatile all-steel units provide the ultimate in space efficiency and mounting convenience—plus economy. They assemble quickly without special tools. Hundreds of combinations let you customize enclosures to fit your needs. Modular construction lets you add components and accessories easily. For free catalog, write: Honeywell, Apparatus Controls Division, Dept. SE-4-61, Minneapolis 8, Minn.

Honeywell

Honeywell International: Sales and service offices in principal cities of the world.

Honeywell MODU-MOUNT* TRADEMARK

Honeywell

Honeywell INTERNATIONAL: Sales and service offices in principal cities of the world.

Honeywell MODU-MOUNT* TRADEMARK

Honeywell

Honeywell INTERNATIONAL: Sales and service offices in principal cities of the world.

Honeywell MODU-MOUNT* TRADEMARK

Honeywell

Honeywell INTERNATIONAL: Sales and service offices in principal cities of the world.

Honeywell MODU-MOUNT* TRADEMARK

Honeywell

Honeywell INTERNATIONAL: Sales and service offices in principal cities of the world.
Self-Stimulation Experiments

Your publication of papers by Margules and Olds [Science 135, 374 (1962)] and by Hoebel and Teitelbaum [Science 135, 375 (1962)] leads me to propose the following physiological explanation of the association which they describe between mechanisms for self-stimulation and for feeding in the lateral hypothalamus. It is my opinion that in a self-stimulation experiment the negative feedback loops of normal feeding mechanisms are replaced by an artificially constructed loop having a positive sign.

Under natural conditions, an activation of the lateral hypothalamus induces or facilitates feeding behavior. Included in the many possible varieties of such behavior is bar pressing—one of the responses which lateral hypothalamic activity will induce for feeding. Ordinarily such behavior induced by the lateral hypothalamus leads to ingestion of food, and this leads in turn to a number of physiological changes which inhibit further intake of food and suppress the activity of the lateral hypothalamus. But when, as in a self-stimulation experiment, the bar pressing leads not to food ingestion but to electrical stimulation of the lateral hypothalamus, then that part of the brain can only become still more active. Consequently the animal is that much more likely to press the bar again, and every further press enhances the chances of more presses. Induced to press the bar in the first place by a naturally occurring activation of its lateral hypothalamus, the animal receives for its press only a recurrent stimulation into the region which originated the bar pressing.

This distinction between a normal, negative feedback loop and an artificial, positive loop avoids the paradox mentioned by Olds [Physiol. Rev. 42, cation would take a full lifetime to write, and the resulting program 1000 years to de-bug. There is no way of knowing in advance; we must find out by experimenting.

Dogmatic assertions of the omnipotence of computers tend to stir up a multiplicity of, often unpleasant, reactions in the reader. They do not have the supposedly compensating advantage of being true.

ULRIC NEISSER

Brandeis University,
Waltham, Massachusetts
554 (1962)] in these words: "In any event it is clear that stimulation of the same lateral area has two usually dis-associated effects . . . the effects of the primary drive itself . . . [and] the effect of the primary reward related to that drive. . . . Therefore the possibility that the electric stimulus constitutes a simple internal surrogate for either is unlikely" (pp. 593–94). It seems more probable that self-stimulation of the lateral hypothalamus is a surrogate for natural stimulation of the lateral hypothalamus—nothing else.

If my interpretation for the relationship between feeding and self-stimulation is correct, then one can predict that any region of the brain where self-stimulation is observed must function as a component of a similar physiological system, in which the animal can be taught to use bar pressing as a part of some normal behavioral sequence.

JOHN R. BROBECK
National Defense Medical Center,
Taipei, Taiwan

While I find myself in sympathy with Brobeck's view, I find it difficult to agree fully for two reasons:

1) At the beginning of a self-stimulation experiment, bar pressing has never been previously associated with or been instrumental in feeding behavior. It is a random response like ear twitching or tail movement, and it should be kept in mind that any random response may be used to trigger the electric stimulus. The chosen response will quickly rise in frequency, gradually excluding other responses from the immediate repertory, until the chosen response predominates and occurs at a maximum possible rate. It is difficult to understand why this response should be chosen for repetition just because of its temporarily contiguous relationship to the subsequent increment in lateral hypothalamic activity. The increment should make all food-related or other possible responses more likely, but I do not find in Brobeck's explanation any reason why the response emitted just prior to artificial stimulation of the hunger drive should be marked for immediate repetition. We think of a hungry animal trying the habitual responses in an effort to get food, and if these fail, trying others. If some item of the new repertory were followed by a sudden rise in hunger or in any internal activity generator, would that response be repeated? If so, why?

2) If the size of the supra-threshold

BUDGET-PRICE JEM-T6 ELECTRON MICROSCOPE: 20 A RESOLUTION . . .
30,000X MAGNIFICATION

Available in the U.S. and Canada only from Fisher Scientific, the JEM-T6 electron microscope guarantees resolving power of better than 20 A and achieves 12 A. Direct magnification: 500X to 30,000X. The JEM-T6 is a true electromagnetic microscope at a price which equals or beats that of less satisfactory instruments. Perfect for industrial quality control work. Excellent for classroom teaching and practice. Ideal for specimen review. If you want a compact, even lower priced electron microscope, Fisher recommends the JEM-T1. Resolution: 50 A; direct magnification: 5000X. Both microscopes are available under terms of the new Fisher Financing Plan. For more facts about the microscopes and the Financing Plan, write Fisher Scientific Company, Fisher Building, Pittsburgh 19, Pa.

FISHER SCIENTIFIC
World's Largest Manufacturer-Distributor of Laboratory Appliances & Reagent Chemicals
Boston • Chicago • Fort Worth • Houston • New York • Odessa, Tex. • Philadelphia • Pittsburgh • St. Louis • Union, N. J. • Washington • Edmonton • Montreal • Toronto

12 APRIL 1963
42-channel simultaneous recording of on-off operations

The *event/riter* Operations Recorder offers proved TI quality recorder features at the lowest cost per channel. From 1 to 20 channels can be recorded on 4⅝" chart—up to 42 channels on a 9¾" chart. Flush-mounting or portable models, finger-tip speed changer, a-c, d-c or switch closure inputs (which may be mixed) are other features which make the *event/riter* first choice for continuous strip chart recording of on-off operations. Write for complete information.

A trademark of Texas Instruments Incorporated

Series 1200

PARR Calorimeter

for determining the heat of combustion of solid and liquid fuels.

Excellent for either routine or re-search calorimetry.

Any of seven different PARR oxygen bombs can be used in the Series 1200 adiabatic calorimeter for testing samples liberating up to 10,000 calories. The circulating water jacket surrounding the calorimeter chamber can be maintained under either adiabatic or isothermal temperature control by manual adjustment or using the new PARR 2601 Automatic Controller.

Ask for specifications 1200 and 2600

λ ≠ L

If you work with λ, you know that there is no λ on the standard typewriter. Perhaps you have tried inserting your lambdas by hand . . . or asking your typist to add the Greek after she has finished the typing. Her λ may not improve on your λ and it’s all Greek to her. A concern for λ may indicate a concern for other Greek symbols:

\[\alpha = \frac{K}{\lambda^2 - \lambda_0^2} \]

\[\alpha = A + B/\lambda^2 \]

If you’re hand-lettering your Greek, you’re wasting your time and confusing your secretary. Get TYPIT®, let your secretary type Greek. With TYPIT® she can insert any of more than 500 different symbols in copy as she types. She will not have to lose time or patience changing keys on the typewriter. Call your local office machine dealer or write to us for our catalog of symbols, or additional information.

James Olds

Department of Psychology,
University of Michigan, Ann Arbor

Electric field in a self-stimulation test is approximately 1-mm sphere, it seems unlikely that the sphere in such a complex structure as the hypothalamus in a small animal like the rat is homogeneous in regard to function. One millimeter is the cross-sectional diameter of the whole medial forebrain bundle which might so far as we know mediate the whole gamut of emotional control. Thus, on anatomical considerations alone it seems that an electric stimulus here must be having more than one effect.

Two possible explanations occur to me; different from Brobeck's, but equally plausible.

1) The electric stimulus might simply activate two different mechanisms, one yielding eating behavior, the other yielding behavioral reinforcement. The mechanisms might be grouped in anatomical proximity in the lateral hypothalamus so that both could be brought under control of a common deficit-sensor (such as the hypothetical glucose receptor). In such a case, a deficit in nutrients would have two consequences, (i) generating activity directly in the eating behavior system, and (ii) lowering thresholds in a "taste" system so that stimulation by food would "taste better"; that is, it would have more power as a positive reinforcement over antecedent operant behavior patterns. If such an anatomical proximity existed, electric stimulation, acting as something of a bludgeon, would have two effects, evoking directly the eating behavior system and the positive reinforcement mechanism of the "taste" system.

2) The electric stimulus has the same effect as food in the mouth which causes eating and repetition of antecedent behavior. These views are related both to one another and to Brobeck's view, but they emphasize the distinction between drive-caused behavior and reward-caused selection of a particular behavior for repetition. In drive-caused behavior an antecedent condition heightens the activity level of the organism facilitating all behaviors, thereby causing an increase in the diversity of behavior. In reward-caused behavior a stimulus subsequent to a random response causes that particular response to be repeated at the expense of all other random responses, thereby diminishing the diversity of behavior.