SALT-LAKE FILL
When will it wear out?

Most things we know about—and this includes biological systems—begin to wear out as soon as they go into service. Survival rates do not follow a Gaussian distribution. Life is not symmetrical. For the person concerned with reliability, the problem is to find a realistic mathematical representation of the wear-out phase of components.

In a break from classical reliability statistics, GM Research mathematicians were among the first to use the relatively little known Weibull distribution function . . . a remarkable generalized way of handling skewed distributions by one family of straight lines. To demonstrate its appropriateness, they've developed a number of easy-to-use graphical techniques for planning and interpreting life tests, fatigue experiments, and even incomplete field service data. Among their pioneering contributions:

A new method using median ranks for graphically describing experimental main effects and interactions;

New ways of slashing test times and optimizing experimental designs;

A new method (theory of suspended items) for analyzing endurance data in which some items have failed and some are still running.

Now an accepted standard in the bearing industry, their graphic Weibull techniques have filled numerous papers and two books now on press. It's one of the ways GM researchers and engineers are working to bring improved reliability to both space and earth-bound hardware.

General Motors Research Laboratories
Warren, Michigan

Varying one parameter (b) in the Weibull distribution function allows the characterization of many types of reliability phenomena.
A Rigorous Yet Practical Textbook for the Introduction to Chemistry

New (2nd) Edition—Hutchinson's
CHEMISTRY: The Elements and Their Reactions

This New (2nd) Edition has been extensively revised to meet the needs of the majority of general chemistry courses. It makes rigorous yet realistic demands upon both the student who wants to learn and the teacher who wants to teach the principles of modern chemistry. A completely new series of questions and exercises have been added at the end of each chapter. Totaling more than 1,000, this valuable series gives the student intensive practice in calculating many kinds of chemical problems. The first 300 pages of the book—on theoretical chemistry—have been thoroughly rewritten and reorganized. Important areas such as solid state chemistry, equilibria, and the concept of affinity are more fully amplified. The sections on atomic structure and the periodic table now precede the information on molecular weights, atomic weights, and molecular formulas. The remaining half of the book, on descriptive chemistry, has been abridged and revised to conform to the practical limitations of the introductory course. If you teach a "solid" course in general chemistry, this is an ideal text.

By Eric Hutchinson, Ph.D., Professor of Chemistry, Stanford University. About 625 pages, 6½" x 9¼", with about 300 illustrations. About $8.50.

New (2nd) Edition—Just Ready!

78 Thoroughly Tested Experiments for the Beginning Course in Organic Chemistry

A New Book—Popp & Schultz's
ORGANIC CHEMICAL PREPARATIONS

Each of the 77 experiments in this new laboratory manual has been tested, revised, and modified by extensive student use. An excellent discussion prefaces each exercise, explaining the nature and purpose of the experiment. A series of questions follows each experiment, stressing techniques of organic chemical practice, and correlating the mechanistic, quantitative, and theoretical aspects. Excellent drawings illustrate the use of equipment. Perforated sheets are provided in an appendix, for student reports. Experiments are included on: Fractional distillation—Acetylene—Ethylbenzene—Characterization of alkyl derivation of benzene—Steam distillation—Trichloroethyl alcohol, 2-Ethylbutanoic acid.

By Frank D. Popp, Ph.D., Assistant Professor of Chemistry, Clarkson College of Technology, Potsdam, New York; and Harry P. Schultz, Ph.D., Professor of Chemistry, University of Miami, Coral Gables, Florida. About 400 pages, 7¼" x 10¼", illustrated. About $5.00.

New—Ready April, 1964.

Use this coupon to order your copy today—
These texts gladly sent to teachers on approval

W. B. SAUNDERS COMPANY
West Washington Square, Philadelphia 5

Please send and bill me:

☐ Hutchinson—CHEMISTRY: The Elements and Their Reactions..............., About $8.50
☐ Guyton—FUNCTION of the HUMAN BODY..............., About $8.25
☐ Popp & Schultz—ORGANIC CHEMICAL PREPARATIONS....., About $5.00

Name

Address

SC 3-6-64
EXTEND THE USEFULNESS OF GEL FILTRATION IN ANALYTICAL AND PREPARATIVE OPERATIONS

Effluent delivery rates increased full order of magnitude

Improvements in the production of SEPHADEX now permit this useful cross-linked dextran material to be supplied in the form of spherical beads. Substitution of the new beads for the irregularly shaped particles in which SEPHADEX was heretofore available (see Figure 1) results in far more uniform hydrodynamic conditions within SEPHADEX columns. Tangible results? Flow rates are greatly improved with remaining good resolution.

The introduction of the new beads greatly extends the possibilities to use SEPHADEX gel filtration in production-scale preparative operations. We strongly suggest that laboratory workers acquaint their colleagues in semiworks and production engineering with the new beads of SEPHADEX. The use of the spherical particles could open entirely new avenues in unit operations.

Figure 1. SEPHADEX was formerly supplied in the form of irregularly shaped particles as shown in top photograph. Now available in spherical beads as shown below, SEPHADEX facilitates packing of columns and greatly increases speed of operations.

Figure 2. The curves above depict pressure-drop/flow rate functions for columns using a 50 cm bed of SEPHADEX G-25. For given hydrostatic heads, note that the new spherical beads give up to tenfold greater effluent deliveries. Analytical procedures are hastened and preparative operations are put within economically practical engineering ranges.

<table>
<thead>
<tr>
<th>SEPHADEX Type</th>
<th>Exclusion Limit (MW)</th>
<th>Grade</th>
<th>Size (microns)</th>
<th>Bed Volume ml/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-25</td>
<td>5,000</td>
<td>coarse</td>
<td>100-300</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fine</td>
<td>20-80</td>
<td></td>
</tr>
<tr>
<td>G-50</td>
<td>10,000</td>
<td>coarse</td>
<td>100-300</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fine</td>
<td>20-80</td>
<td></td>
</tr>
<tr>
<td>G-79</td>
<td>50,000</td>
<td>one</td>
<td>40-120</td>
<td>12-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-100</td>
<td>100,000</td>
<td>one</td>
<td>40-120</td>
<td>15-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-200</td>
<td>200,000</td>
<td>one</td>
<td>40-120</td>
<td>30-40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>grade</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For full information on the use of SEPHADEX in gel filtration, send the coupon with your letterhead.

(Inquiries outside the Western Hemisphere should be directed to PHARMACIA, Uppsala, Sweden.)

PHARMACIA FINE CHEMICALS, INC.
Department B, 501 Fifth Avenue, New York 17, New York

"SEPHADEX": A Unique Substance for Modern Chromatography "SEPHADEX in Gel Filtration": Theory and Experimental Technique

Name
Company
Address

6 MARCH 1964
In dynamic function studies — such as cardiac insufficiency, renal function, and blood circulation — it is essential to record the rapidly changing concentrations of radioactivity as they occur. The University II Series Precision Digital Ratemeter Model 425 immediately and accurately records all pertinent events for precise evaluation.

With a new patented transistorized design, the 425 records all events occurring in a pre-selected time interval and transposes the data instantaneously into a buffer storage "memory". Rate per second is then determined and displayed as often as every tenth of a second; rate per minute, every hundredth of a minute. Only a fraction of a millisecond is needed at the end of each interval to actuate the digital display. (Pulse-events as rapid as one million counts per minute can be detected and displayed!) No information is lost.

In effect, ordinary ratemeter lag is eliminated, and there is no "smoothing" of the radioactivity curve.

The output data are available in three forms — as a visual display on the face of the instrument; as a printed paper tape record indicating counts per unit of time, time interval, and selected range; and as an analog-record of the curve plotted on a standard chart recorder. The researcher can easily correlate this information for the most accurate interpretation of the dynamic function being studied.

COUNT UP TO KNOW in all dynamic clinical or research studies with the University II Series Digital Ratemeter Model 425. Write to the Nuclear Instrument Dept. for brochure 425 or for a demonstration by a field engineer.

TAKE OFF 10 FRACTIONS

as soon as they are collected, and 10 more, and 10 more,
and 10 more ———> ∞. As long as empty test tubes in handsome red polypropylene racks (holding 10 each) are supplied on the right, the same may be removed from the left — with enclosed fractions, of course. Twenty (20) racks can be put in the apparatus for the period of unattended run. Write GILSON MEDICAL ELECTRONICS, Middleton, Wisconsin, for data on the

GME LINEAR FRACTIONATOR
Automatic Background Subtraction IN NEW TRI-CARB SPECTROMETERS

Background subtraction is an essential operation in data computations for most experiments involving the measurement of radioactivity. Background must be determined accurately, and subtracted from gross counts in order to achieve meaningful results.

New 3000 and 4000 Series Tri-Carb Spectrometers perform background subtraction automatically at the user's option. This eliminates the work of manual subtraction as part of the post count computations. More importantly, it ensures the accuracy of the scaler ratios which these instruments are capable of calculating automatically. In quench monitoring, for example, calculation of scaler ratios using gross counts (background not subtracted) can introduce significant errors, even for samples with count rates as much as a hundred times background.

There are several methods of performing the automatic subtraction of background. The one found to be most accurate at all count rates is electronic subtraction of a statistically pre-determined background prior to each counting run. In new Tri-Carb Spectrometers, the user simply dials into a four-digit register the background to be subtracted from each channel during the preset time period. This method assures complete statistical accuracy, even on low activity samples and on the blanks used to monitor background in every experiment. An informative data sheet comparing alternate methods of background subtraction is available and will be mailed on request.

Automatic background subtraction is just one of many significant new features available in Packard Tri-Carb Spectrometers. Ask your Packard Sales Engineer for complete details, or write for Bulletin 1030.