It's yours for the asking—a convenient reference guide to almost every type of physiological measurement. It charts the ranges and characteristics of over 30 primary signals, and lists the various transducers commonly used to record them.

The guide also shows the right coupler to use to link each transducer to an Offner Dynograph® recorder. These small plug-in couplers are an outstanding benefit of Dynograph recorders—they can be interchanged in seconds to record virtually all physiological phenomena.

Would you like a copy of this handy chart? We'll send you one by return mail. Ask for Chart 220-5.
Studies of Small Gap Semiconductors for Infrared Detection

The window in the atmosphere between 8 and 14 microns has stimulated work on devices that will detect longer wave lengths. New semiconductor materials may make practical the detection of longer wave lengths and therefore targets with far lower temperatures.

The atmosphere offers several windows for energy transmission in the infrared spectrum. One particularly good one occurs between 8 and 14 microns where energy is transmitted freely. However, radiation on either side of the window is blocked due to absorption by the molecules in the atmosphere.

All objects at temperatures above absolute zero give off radiations and the lower the temperature the longer the wave length. Therefore, if long wave lengths can be detected by a practical means, targets of much lower temperatures could be recognized.

Infrared detectors use either intrinsic or extrinsic semiconductors. Intrinsic detectors use electron transitions within the atoms that make up the semiconductor material itself. The extrinsic type utilizes electron transitions that occur due to the presence of impurity atoms introduced into the semiconductor material. (See Fig. A.)

While the extrinsic materials permit detection of infrared radiation beyond 6 microns, these materials require cooling to below 40°K. This calls for bulky, heavy apparatus undesirable for airborne applications and difficult to design into multielement detectors.

Until now no one has been able to make an intrinsic conductor that will detect photons in the longer wave lengths. In an intrinsic detector the narrower the energy gap between the valence band and the conduction band the easier it is to excite an electron across the gap. This excitation occurs two ways: by photon excitation and by thermal excitation. The problem is to produce a material with a gap narrow enough to respond to long wave lengths (that is, low energy photons) but wide enough so that practical cooling temperatures will be sufficient to minimize thermal excitation.

Honeywell scientists have performed a theoretical analysis which shows the feasibility of making an 8 to 14 micron intrinsic detector capable of operating at liquid nitrogen temperature, 77°K. (—320°F.)

Honeywell's Research Center
Hopkins, Minnesota

FIG. A

The analysis also shows that by the use of intrinsic material the detectors operating at 77°K could be made so sensitive that the only limitation is imposed by the randomness of the photons coming from the radiation background. Problems present themselves in selecting elements for the semiconductor. For example: while some narrow gap materials meet many of the requirements, their gap is so narrow that the required cooling is impractical. (This is the case with mercury telluride.)

Honeywell's contribution to the development of a suitable detector has been to prepare a compound semiconductor composed of different proportions of mercury, cadmium and tellurium and to develop a theory capable of explaining the behavior of this material.

This compound is difficult to synthesize. Mercury evaporates readily at room temperature yet the compound requires heating to 800°C. At this temperature the pressure of mercury within the capsule is very high.

A number of different compositions have been formulated. Most promising is a compound of approximately 80% mercury telluride and 20% cadmium telluride. With this compound Honeywell scientists, for the first time, have been able to demonstrate photon detection at wave lengths out to 14 microns. Previous workers had been able to demonstrate only thermal effects in these materials.

Further work is under way at Honeywell's Research Center on purification of the material and improvement of its crystal structure. At the same time additional theoretical work is under way to further understand the very complex band structure of small gap semiconductors. If the transitions in these materials can be explained, new insights in semiconductor theory will be attained. This research is partially supported by the Aeronautical Systems Division, Air Force Systems Command.

If you are engaged in scientific work involving small-gap semiconductors and would like to have copies of papers on the subject by Honeywell scientists, you are invited to correspond with Dr. Paul W. Kruse, Honeywell Research Center, Hopkins, Minnesota.

If you are interested in a career at Honeywell's Research Center and hold an advanced degree, you are invited to write Dr. John Dempsey, Director of Research at this same address.
Specify the BARBER-COLMAN
Series 5000 SELECTA-SYSTEM
with capillary column capability...

in Gas Chromatography

Your gas chromatograph is not capable of giving you the very best in gas chromatographic analysis unless it is equipped with capillary* columns.

Consider these advantages of capillary columns:
- Resolutions which are impossible on packed columns.
- Analyze very small samples with ionization detector systems.
- Temperature programming extends the range of capillary columns, simultaneously providing excellent resolution and high sensitivity to report trace constituents in extremely complex mixtures.
- Better resolution of complex samples with very similar structural groups.
- A complete analysis in 20 minutes which may take more than an hour with packed columns.
- Analyses which require temperature programming with packed columns can normally be performed isothermally with capillary columns.

Also of Prime Importance...
Barber-Colman has been a leader in the manufacture of capillary columns and capillary column gas chromatographs for many years.

You Should Also Know that...
The Barber-Colman Series 5000 Selecta-System Gas Chromatographs were designed for capillary column systems and they feature:
- Model 5061 Column Bath with Linear Sample Inlet Splitter.
- Model 5121 High Temperature Flame Detector. Detectability 10^{-14} Mole/sec.
- Model 5041 Battery Electrometer — Noise level 10^{-14} Amps.

For further information on capillary column chromatographs and other superior performance gas chromatographs available in the Selecta-System, contact one of the 42 Barber-Colman Branch Offices — see the Yellow Pages.

*Licensed under Golay Patent 2920478.

The Barber-Colman Series 5000 Selecta-System represents a most flexible system for keeping abreast of a fast-changing technology. The modular unitized system fits your needs now and later — over 20 different components help to make up more than 50 different system combinations.
NEW DEEP-SEA AMPLIFIER TRANSMITS 128 TELEPHONE CONVERSATIONS

Our engineers have developed a new amplifier which simultaneously transmits 128 telephone conversations in both directions over a single cable. It is designed to operate without repair or maintenance on the ocean floor for 20 years.

The new amplifier (illustration below) is an important advance in deep-sea communications technology.

To make a single amplifier operate in two directions, it was necessary to provide a precise, complex filter system to separate the signals. Signals traveling in one direction occupy a frequency band from 116 to 512 kc., and those traveling in the other direction, from 652 to 1052 kc.

The gain of each amplifier must accurately compensate for its share of cable loss. The total loss varies over the frequency band and, in a transatlantic system, reaches a maximum of 9000 decibels. Since there is no way to adjust an amplifier on the ocean floor, the performance of each one must be pre-established with extreme precision.

A 3600-mile cable link, with its 180 amplifiers, includes 36,000 electronic components. Each component has to be endowed with a reliability far in excess of the requirements of conventional land systems.

The casing and its seal to the cable must prevent minute water seepage at ocean bottom pressures. This could accumulate fatally over the years, and so production tests employing radioactive isotopes are used to search for any such microscopic leakage.

In bringing the new underseas system to production we worked closely with Western Electric, the manufacturing unit of the Bell System. Our joint objective was to create a system of high reliability that could be manufactured economically. The new amplifiers are being used first in the new deep-sea telephone link from Florida to Jamaica and Panama.

BELL TELEPHONE LABORATORIES
World center of communications research and development

View of deep-sea amplifier with casing cut away. The casing is of noncorrosive beryllium copper, tested to withstand pressures up to 11,000 psi.
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Publisher</th>
<th>Pages/Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW BOOKS IN SCIENCE AND MEDICINE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Techniques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...New Procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LECTURES FOR MEDICAL TECHNOLOGISTS</td>
<td>H. Ivan Brown, The Methodist Hospital of Central Illinois, Peoria, Ill.</td>
<td></td>
<td>The simplest of language...amply illustrated...used for use in the early phase of cytototechnology training. Stressess thorough familiarity with benign cells as an essential element in basic training. To acquaint students with commonly used terminology, a comprehensive glossary of respiratory diseases and syndromes is included. Jan. '64, 120 pp., 97 ill., $3.75</td>
</tr>
<tr>
<td>MATHEMATICAL ELEMENTS OF LAMELLAR BONE REMODELLING</td>
<td>H. M. Frost, Henry Ford Hosp., Detroit, Mich.</td>
<td></td>
<td>This book is a must for individuals who are faced with the difficult problem of selecting equipment. Deals with automated instruments of multi-test function, individual tests and automated instruments of unit-test function, and automated aids to analysis. Sept. '63, 148 pp., 46 ill. (American Living Chemistry) edited by I. Newton Kugelmass, $6.00</td>
</tr>
<tr>
<td>THE PHYSICS OF RADIOLOGY</td>
<td>Harold Elford Johns, Univ. of Toronto, Toronto, Canada.</td>
<td></td>
<td>This chapter on "Complementi and Complement Fixation and Kieffeldl Nitrogen Determination by Manfred M. Mayer, The Johns Hopkins Univ., Baltimore, Md."...should be on the shelf of every serious student of bacteriology and immunology as well as in the library of any chemist with a biological bent. "The Yale Journal of Biology & Medicine '61, 920 pp., 458 ill., $26.50</td>
</tr>
<tr>
<td>COMPUTER APPLICATIONS IN MEDICINE</td>
<td>Edward E. Mason and William G. Bulgren, both of State Univ. of Iowa, Iowa City, Iowa.</td>
<td></td>
<td>The authors review early reports on the application of computers to problem solving in medicine. Covers also design of experiments, data collection, selection of computer library programs, writing a special program in FORTRAN, and processing and interpretation of results. Jan. '64, 188 pp., 7 ill. (American Living Chemistry), $6.75</td>
</tr>
<tr>
<td>THE REDUCTION OF PATIENT DOSE BY DIAGNOSTIC RADIOLOGY</td>
<td>Robert D. Moseley and John H. Rust, both of Univ. of Chicago, Chicago, Ill.</td>
<td></td>
<td>The reduction of patient dose by diagnostic radiology instrumentation edited by Robert D. Moseley and John H. Rust, both of Univ. of Chicago, Chicago, Ill. (With 29 Contributors) Engineers, physicists and radiologists from industrial and academic research and development laboratories share their research experience, their newest developments and their theoretical considerations in an effort to reduce patient exposure. Jan. '64, 300 pp., 145 ill., $12.50</td>
</tr>
<tr>
<td>THE TREATMENT OF MYOCUT AND PARASITIC DISEASES OF THE CHEST</td>
<td>John D. Steele, San Fernando, Calif. (With 14 Contributors) Physicians and laboratory workers alike will share a mutual interest in this first detailed monograph on mycotic and parasitic diseases of the chest. The chapter on laboratory aspects of the pulmonary mycoses is a complete manual in itself. March '64, 280 pp., 161 ill. (The John Alexander Monograph Series), $14.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE CHEMICAL ORIGIN OF LIFE</td>
<td>Alexander I. Oparin, U.S.S.R. Academy of Sciences, Moscow, U.S.S.R. Translated from the Russian by Ann Synge. In this classic monograph Doctor Oparin discusses three great problems which have attracted the minds of mankind for centuries—the nature of life, the origin of life, and the distribution of life. Makes extensive use of data of evolutionary biochemistry to describe later development of biological metabolism and cellular structure. Feb. '64, about 120 pp., 33 ill. (American Living Chemistry), about $4.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEMISTRY AND TREATMENT OF ADRENOCORTICAL DISEASES</td>
<td>F. G. Prunty, Univ. of London, London, England. The adrenal abnormalities considered include primary and secondary adrenocortical hypofunction, Cushing's syndrome, primary aldosteronism, adrenal virilism with a discussion of interaction between adrenals and gonads, and adrenocortical tumours. Over 1,000 references are included. Feb. '64, 418 pp., 99 ill. (American Living Chemistry), $14.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOME MEDICAL ASPECTS OF MATHEMATICAL BIOLOGY</td>
<td>Nicolas Rashevsky, Univ. of Chicago, Chicago, Ill. Shows how mathematical biology may be applied to such medical problems as retention of particulate material in the respiratory passages, cardiovascular dynamics, pharmacological problems, endocrine system and periodic psychoses, and the central nervous system with special reference to neuroses. Feb. '64, 342 pp., 60 ill., 31 tables (American Living Chemistry), $12.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEND FOR OUR NEW 1964 CATALOG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHARLES C THOMAS • PUBLISHER 301-327 East Lawrence Avenue SPRINGFIELD • ILLINOIS
And they're all high precision.
Several Beckman pH meters double as sodium ion analyzers, oxygen analyzers, chloride ion analyzers, potassium ion analyzers, millivolt meters, silver ion analyzers, lithium ion analyzers, carbon dioxide analyzers, halogen ion analyzers, redox analyzers, ammonium ion analyzers, and as indicators for electrometric titrations.
That's a lot of extra work for a pH meter. But, these Beckman instruments can do it and still give you the precision and reliability you demand for any pH analysis.
You can select from nine versatile Beckman pH meters, too, with different features to meet your specific applications. Some models have null balance for maximum accuracy. Battery power makes others fully portable. The most popular have convenient pushbutton control.
Your Beckman Sales Engineer understands pH meters and their many other uses better than anyone else.
He talks pH fluently. Call him or write direct for Data File LPH-38-164.
Recent AAAS Symposium Volumes

#75. Mechanisms of Hard Tissue Destruction.

1963. 776 pages. 430 illustrations.
One color plate.
Edited by: Reidar F. Sognnaes.
Symposium by 49 outstanding co-authors on destruction of mineralized structures by organisms and by physical and chemical agents, ranging from rock boring to bone resorption and tooth decay.

Price: $13.00. AAAS Member's Cash Price: $11.00.

#74. Aridity and Man.

The Challenge of the Arid Lands in the United States.
1963. 604 pages. 98 illustrations.
Edited by: Carl Hodge and Peter C. Duisberg.
Experience of the United States with its arid zones as reported to the first UNESCO Conference on Arid Lands in Latin America.

Price: $12.00. AAAS Member's Cash Price: $10.00.

#73. Land and Water Use.

With special reference to the Mountain and Plains Regions.
1963. 364 pages. 8 illustrations.
Edited by: Wayne Thorne.
Problems associated with the increasing competitive demands for use of publicly owned lands. Uses by livestock and timber processors versus recreation, wildlife, and water production. Adjustments in public land use in relation to uses of adjacent or intermingled privately owned lands. These and other problems are explored by recognized leaders in the field.

Price: $8.00. AAAS Member's Cash Price: $7.00.

#72. Spermatozoa Motility.

1962. 322 pages. 113 illustrations.
Edited by: David W. Bishop.
For the first time the details of sperm motility are here presented in monograph form. A valuable source of reference for the student and investigator, as well as for the practitioner of applied reproductive biology.

Price: $7.50. AAAS Member's Cash Price: $6.50.

#71. Great Lakes Basin.

1962. 320 pages. 92 illustrations.
Edited by: Howard J. Pincus.
The reader will find here material on pure and applied science, accounts of new research and reviews of material published elsewhere, historical and social studies, and pleas for action and planning.

Price: $7.50. AAAS Member's Cash Price: $6.50.

British Agents: Bailey Bros. & Swinfen, Ltd., Hyde House, West Central St., London, W.C.1

#70. Fundamentals of Keratinization.

Edited by: E. O. Butcher and R. F. Sognnaes.
The fields of anatomy, dentistry, dermatology, medicine, pathology, and zoology are represented in this volume.

Price: $6.50. AAAS Member's Cash Price: $5.75.

#69. Biophysics of Physiological and Pharmacological Actions.

Edited by: Abraham M. Shanes.
A bird's-eye view of a number of principles now considered important. Useful for teaching, as well as for research purposes.

Price: $13.50. AAAS Member's Cash Price: $11.75.

#68. Sciences in Communist China.

1961. 884 pages. 23 illustrations.
Edited by: Sidney H. Gould.
"... strongly recommended to all who are in search of facts and source material on the sciences in China."—Science, 22 September 1961

Price: $14.00. AAAS Member's Cash Price: $12.00.

#67. Oceanography.

Edited by: Mary Sears.
"I know of no other volume that so well defines oceanography, its purpose, opportunities and requirements."—Science, 9 June 1961

Price: $14.75. AAAS Member's Cash Price: $12.50.

#66. Germ Plasma Resources.

Edited by: Ralph E. Hodgson.
"This book will be of interest to nonplant and animal breeders, for the rather general treatment of various topics ... allows for rapid perusal."—Bulletin of the Entomological Society of America, September 1961

Price: $9.75. AAAS Member's Cash Price: $8.50.

#65. Aging . . . Some Social and Biological Aspects.

1960. 436 pages. 65 illustrations.
Edited by: Nathan W. Shock.
"The 26 contributors include many of the most respected names in American gerontology, and the chapters cover a wealth of material."—Journal of Gerontology

Price: $8.50. AAAS Member's Cash Price: $7.50.
PERKIN-ELMER
MODEL 350—
UNMATCHED FOR
QUANTITATIVE
ACCURACY
AND VERSATILITY

The Model 350 Spectrophotometer provides superb quantitative accuracy over its broad range—from the far UV to the near infrared—and unique versatility. Its unexcelled quantitative accuracy is due primarily to its inherent instrumental photometric precision, unhampered by interfering stray light (.0002%, stray light at 210 mμ). Even at high densities, as occur in differential analysis, the Model 350 presents no problems due to stray even in energy-limited spectral regions.

Complementing quantitative accuracy is photometric versatility. Integral ordinate scale expansion means that any weak or recessive band—on any portion of the ordinate—no matter how dense or dilute—can be expanded by factors of 5, 10, 20 or 50 X with the turn of a dial. Sample handling with its attendant errors is greatly minimized. Similar ease of photometric mode programming is afforded by switch-controlled change from absorbance to transmittance and back. This switch also converts the instrument from single to double beam operation. Resolution, when it is required, separates bands less than 0.3 Angstrom apart at 180 mμ.

Extra energy for far UV analyses is provided by a powerful air-cooled deuterium source plus more-highly-efficient optics. A wide range of accessories broaden the Model 350’s applications. With these attachments you can perform, for example, kinetic studies—fluorescence analyses—diffuse reflectance and colorimetric work—temperature sensitive determinations—flame spectra studies of most elements—analyses of micro-samples—optical rotatory dispersion—and many more.

Complete information on the Model 350, including sample spectra, is available from Instrument Marketing Division, Perkin-Elmer Corp., 910 Main Avenue, Norwalk, Conn.
Infrared goes in, orange comes out

No, it's not raw film. Roomlight or daylight does it no harm. In fact, it is intended to be left lying around exposed to fluorescent-lamp light. That's how you charge it up. That's all there is to charging it up. Then you take it to the laser room. Don't rush. The energy won't leak away that fast. If the 5 o'clock bell rings and it's Friday, forget about it until Monday. But do not forget to protect your eyes with 7 mm of Pittsburgh No. 2043 glass (or the equivalent thereof) before firing the laser at it.

The whole point of this picture is that this is a far-field pattern not of a visible-light laser but of an infrared one. Thus we around in white 20 March which purchasing merely big picture surrounded by white. (There's no glass to it, of course.)

The pattern can be photographed from the phosphor on any panromatic or color film but preferably one that comes in a yellow box.

It is very easy to acquire 2" x 3" sheets of Kodak IR Phosphor. All you do is multiply the number you can see around the place by $25 and dispatch a purchase order valid for the product of these two numbers to Eastman Kodak Company, Apparatus and Optical Division, Rochester, N. Y. 14650.

Blue dye

Kodachrome Film can show a plague of locusts against a blue sky. Now please pay attention to a complex message.

Nobody is cheering for the locusts. If it's we or they, we must win. Chemistry has provided effective weapons. Into the mouths of such mighty cannon we must be smart enough not to stick our own heads. In short, let's keep track of these potent pesticides so that we don't eat, drink, or breathe them. A contribution to this endeavor appears in Science, 139, 835 in the form of a paper on Indophenol Blue as a color-fixing agent for halogenated aromatic hydrocarbons on paper chromatograms and spot tests.

Now back to Kodachrome.

The dye that gets cleverly laid down in the blue areas of a Kodachrome picture is...yes, you guessed it—Indophenol Blue, now somewhat modified. Two of us did not guess it—the sales executive who spotted the paper in Science and the chemist who was asked in consequence to make Indophenol Blue in happy innocence of its status as one of the company's most successful products for 29 years. Thanks to a mild silver oxidizing agent the chemist applied to the task in ignorance of the established manufacturing procedure for the dye, he wound up with an embarrassingly purer product than ever yielded by the method developed by his boss's boss long ago, which was only as good as it had to be and carried our blue Technical Grade label. Now (N,N-Dimethylaminoethyl) 1,4-naphthoquinonemine bears a harder name to remember than Indophenol Blue, a white label signifying a purity that justifies a price of $7.00 for 5 g., and the designation EASTMAN 478 that marks it as one of some 4400 EASTMAN Organic Chemicals that professionals order from List No. 43 of Distillation Products Industries, Rochester, N. Y. 14603 (Division of Eastman Kodak Company).

Prices subject to change without notice.

2 colors to wiggle in?

We have made some 2-color oscillograph paper on a thin, quick-drying stock of high dimensional stability.

Should we make some more? Would you buy any of it?

Do you ever have trouble separating superimposed traces?

Would you be willing to modify your conventional oscillographs by insertion of Kodak Wratten Light Filters between lamps and galvanometer mirrors? Are you by chance an oscillograph manufacturer instead of a user?

Are you a little more interested than when color oscillograph paper had to be thick and far more expensive than black-and-white paper?

Do science and engineering benefit from this kind of small improvement in the tools of the trade?

Is there an oscillograph-processing machine down the hall? If not, why not? If there is, would anybody mind if you slipped a different set of chemicals into the four tanks once in a while when you felt the need of color?

Do you believe those tales about organizations that seek out the brightest young engineers that money can lure and then put them to work with assorted crayons marking each of 50 separate channels of data on a 400-foot length of oscillogram? Do you believe in the dignity of labor?

Is it enough to say that one seldom has occasion to demand higher trace-writing speed than this new 2-color paper can handle? And that it can be processed at 4 to 6 feet per minute?

Do we pant too hard?

How can we help you unless you ask us a few questions of your own from Photorecording Methods Division, Eastman Kodak Company, Rochester, N. Y. (Phone: 716-562-6000, Ext. 3257).

This is another advertisement where Eastman Kodak Company probes at random for mutual interests and occasionally a little revenue from those whose work has something to do with science.
COMMUNICATIONS:
how HVEC contributes to research through the dissemination of technical information.

Third International Accelerator Conference

High Voltage Engineering sponsored its Third International Accelerator Conference last November in Boston. The three-day meeting was attended by 480 Scientists from 21 countries. Fifty-five papers were presented.

Objective of the Conference: to promote the exchange of information pertaining to accelerators, research program techniques, space physics, electron research, accelerator technology, and experimental techniques. Proceedings are presently being prepared and will be available on request.

Tandem Quarterly

In October 1963, HVEC published the first issue of The Tandem Quarterly — a technical report on tandem accelerator technology for research laboratories and personnel. Its one aim: to supply its recipients — mostly physicists and operating staffs of tandem laboratories — with information not usually covered in existing journals. For instance:

- Machine operating experience
- Particle beams obtained at each installation and their uses
- Experimental techniques and hardware
- Reviews of experimental programs
- Excerpts from proposals (with permission of the institution and funding agency)
- Accelerator installation and shielding information

HVEC disseminates a variety of information on charged particle research, basic and applied, as well as technical developments at HVEC. Available information spans the spectrum of nuclear research and technology . . . physics, chemistry, and industrial and medical applications. As manufacturers of particle accelerators, we provide this service because it strengthens the scientific cause and acquaints a wide audience with the uses and benefits of particle accelerators.

Service to Science

This series is another recent HVEC program to disseminate information on noteworthy developments in accelerator experimentation and techniques, particularly single-stage machines. Topics to date include:

- High Energy Protons from Low Energy Van de Graff Accelerators
- Heavy Ion Acceleration
- Carbon Determinations Via Charged Particle Activation
- Energy Spectra of Energetic Particles in Space Micrometeoroid Simulation
- High Energy Photons from Low Energy Van de Graff Accelerators
- Copies of these and future Technical Notes are available upon request

Technical Notes

New Single Stage ICT Accelerators

HVEC recently introduced its ICT Accelerator systems. These high-current machines offer the same high-purity particle beam, low energy spread and polarity-conversion features which are characteristic of Van de Graff accelerators. Several models are available:

- An 8-MeV Tandem Ion Accelerator convertible to electron operation.
- A 4-MeV Single Stage, Positive Ion Accelerator convertible to Electron or Tandem Operation.

All models incorporate an Insulating Core Transformer power source rated at 12 milliamperes. A 60 kilowatt 3-MeV electron machine is also available. Sufficient power is provided to capitalize on future developments in high-current particle source and target technologies.

For more detailed information, please write to Technical Sales, High Voltage Engineering Corporation, Burlington, Massachusetts.
All the elements of a complete nuclear analysis system now available from TMC

Whether for simple analysis or for complex, multiple detector experiments as shown in the block diagram, TMC can provide a totally integrated system that assures compatibility of all the required units. As sole supplier, we assume full responsibility for the performance of the entire system, cover it under one guarantee and back it with a single organization that is fully qualified to service all elements of the instrumentation. The TMC modular instrumentation concept prevents premature obsolescence often experienced with changing nuclear requirements by offering new units that are fully compatible with previously existing systems.

DETECTORS AND AMPLIFIERS
TMC makes a wide selection of solid state lithium drift and quartz passivated detectors, scintillation detectors, and a series of fast amplifiers and preamplifiers designed for general laboratory applications. Both amplifiers and preamplifiers may be used with scintillation and solid state detectors or ion chambers.

ANALOG DECISION UNITS
TMC fast analog decision making units have a minimum resolving time of 10 nanoseconds. The circuits were developed by Goulding and Landis at the Radiation Laboratory of The University of California. The logic modules in a single system can be arranged in any combination to meet specific experimental requirements.

DIGITAL DECISION UNITS
Digital decision making units are available for multiplexing ... multiple detector inputs ... pulse routing to pre-assigned memory locations ... pulse sorting by digital amplitude level ... storage format selection. They are compatible with TMC magnetic core data storage memories having up to 65,536 channels.

DATA HANDLING UNITS
TMC systems store data in either magnetic core memories or magnetic tape systems and may be equipped with control units for mega-channel display as well as slice, contour and isometric modes. Data readouts include paper tape ... magnetic tape ... typewriter ... printer ... plotter. Tape buffer systems are also available.

You can get complete details of all units of TMC integrated systems from any TMC office or from Technical Measurement Corporation, 441 Washington Avenue, North Haven, Connecticut.
For reagents of highest purity...
Impurities often become a part of the crystal lattice of the dominant material. The yellow spheres in the representation of the structure of crystalline sodium chloride denote bromide as the impurity.

Specify ‘Baker Analyzed’ labeled with integrity!

Specify ‘Baker Analyzed’ reagents on your next order for laboratory chemicals. When you do, you're assured of reagents manufactured competently to the highest specifications of purity. We confirm the purity of every lot of reagent chemical we prepare and then put the actual analytical data on the label. Check and compare the low level of impurities. Satisfy yourself that every ‘Baker Analyzed’ reagent is the finest available for your laboratory needs. Benefit from the latest innovations in safe
and convenient packaging, too.

You get delivery of ‘Baker Analyzed’ reagents on the date you specify from a near-by source of supply. Check the last page of this folder for a list of distributors in your area. Ask one of them for a copy of our latest “Specification Catalog and Price List.” Or you can obtain a copy by mailing the coupon on the last page to us.

In the spectrophotometric method for iron, the low level of iron impurities in such ‘Baker Analyzed’ reagents as hydrochloric and nitric acids, ammonium hydroxide, and acetone instantly mark them as suitable for use.

‘Baker Analyzed’ sodium hydroxide, sodium sulfate, and sulfuric acid are widely used in Kjeldahl digestions for the determination of nitrogen. These J. T. Baker chemicals are produced and controlled for low content of nitrogen compounds and the actual analytical value—to the decimal—is on the Baker label.

J.T. Baker Chemical Co. Phillipsburg, N.J.
Well-balanced inventories of 'Baker Analyzed' reagents, laboratory equipment and apparatus are available in your local area. You're assured of fast delivery and on the exact date you specify. You also benefit from the personalized service of a laboratory supply representative . . . he's a good source of information on the latest laboratory chemicals and equipment, and he's experienced in solving difficult or unusual problems.

J.T. Baker Chemical Co.
Phillipsburg, N.J.

EDMONTON, ALBERTA
Canadian Lab. Supplies, Ltd.
10989 124th Street
454-6514
Cave & Co., Ltd.
11146 86th Street
GRanite 7-8607
Van Waters & Rogers of Canada, Ltd.
10014 102A Avenue
GArden 4-0718

MONTREAL, QUEBEC
Canadian Lab. Supplies, Ltd.
Box 2090, Station St. Laurent
Riverside 8-8773

OTTAWA, ONTARIO
Canadian Lab. Supplies, Ltd.
1300 Carling Avenue
PA 9-5183

TORONTO, ONTARIO
Canadian Lab. Supplies, Ltd.
80 Jutland Road
West Toronto 18
255-5501
Cave & Co., Ltd.
P. O. Box 96
Downsview
CHerry 6-3131

VANCOUVER, B. C.
Canadian Lab. Supplies, Ltd.
1449 Hornby Street
MUTual 2-4291
Cave & Co., Ltd.
1050 West 6th Avenue
REgent 1-6521
Van Waters & Rogers of Canada, Ltd.
2625 Skeena Street
HEmlock 3-0521

WINNIPEG, MANITOBA
Canadian Lab. Supplies, Ltd.
535 Marjorie Street
St. James
SP 4-1945
Heredity and Development
By John A. Moore, Columbia University and Barnard College
Along with portions reprinted from Dr. Moore's distinguished text, Principles of Zoology, this book includes two new chapters on genetics and a new chapter on embryology. In addition to presenting the important modern developments in both fields, the text describes the early research work upon which these new discoveries are based.
1963 256 pp. 77 illus. paperbound $1.95

Foundations of Thermodynamics
By Peter Fong, Utica College of Syracuse University
Departing from the approach used in conventional textbooks, Professor Fong expounds a new formulation that gives a physical insight into thermodynamics without the use of elaborate mathematics. Basic concepts are carefully defined, especially those which are pivotal in theory, such as the concept of reversible process.
1963 110 pp. $2.50

An Introduction to Human Physiology
By J. H. Green, University of London at the Middlesex Hospital Medical School
The basic concepts of human physiology are presented as a framework to which additional knowledge may be added by attendance at systematic lectures or through study of larger textbooks, reviews and original papers. The book is designed for use by medical, dental, and nursing students.
1963 176 pp. 214 illus. paperbound $4.85 clothbound $8.00

Foundations of Psychopathology
By John C. Nemiah, M.D., Harvard Medical School and Massachusetts General Hospital
This excellent introduction to the basic principles of psychopathology focuses on clinical phenomena. Such fundamental topics as the dynamic unconscious, psychological conflict, repression, the childhood roots of emotional disorders, defenses, and symptom formation receive thorough coverage.
1961 352 pp. $6.50

Oxford University Press
417 Fifth Avenue
New York, N.Y. 10016

Radiation Accidents and Emergencies
Local emergencies, small accidents, and major catastrophes involving ionizing radiation were the main topics of discussion at a symposium on radiation accidents and emergencies in medicine, research, and industry held in Chicago, 19–20 December 1963. All pertinent aspects of a pure emergency situation were covered—accident dosimetry, handling of spills, medical aspects, mass survey problems, control of post-accident exposures, psychological and legal considerations, public relations, and others.
In most accident or emergency situations (that is, incidents resulting from accidents where prompt action is necessary), the intelligent attention and full capacity of the emergency worker should be directed to the following sequence of action: (i) The saving of lives (rescue operations, protection from further injury, and directing the victims back to active, useful lives); (ii) containment measures and prevention of further injury or threat of injury; (iii) salvage of equipment and materials; and (iv) turning the disaster site over to persons interested in or responsible for restoration.
The type of emergency action taken in an area where radiation has been released will depend on whether or not there is a reasonable expectation that anyone is present and alive. In either case, the course of action to be pursued should be determined by the person designated as responsible for the emergency action (E. Vallario and R. Catlin, U.S. Atomic Energy Commission). The risk to the rescue workers should be weighed against the probable success of the rescue action. Attempts to rescue victims should be regarded in the same context as any other emergency action involving the rescue of victims, regardless of the type of hazard involved. Any rescue activity that may involve substantial personal risk should be performed by volunteers, and all emergency workers should be advised of such risks prior to their participation.
From the legal point of view, Forgotson (Walter E. Meyer Research Institute of Law, Washington, D.C.) pointed out that a particularly complicated situation is presented when, for the purpose of attempting or effecting a rescue of persons involved
in a disaster, or of preventing a disaster, it becomes necessary to expose individuals to doses of radiation in excess of 3 rem per quarter of a year and 25 rem for a single accidental exposure. He discussed the effect of these dose limitations and concluded that, on the basis of Federal Radiation Council publications, exceeding these doses does not constitute negligence per se and, in certain situations, even might not constitute evidence of negligence. (He further discussed a number of liability questions, including the potential liability of a manufacturer or seller of a source. In this connection, he called special attention to the recent product liability case of Goldberg versus Kalsman Instrument Corporation, a case which marked a departure from the way the New York Court of Appeals or any other court has previously handled one of these decisions. In this case, the majority of the court held that someone, namely, the ultimate manufacturer, is left in the role of a virtual insurer for the defective designs.)

The screening of persons exposed to radioactivity for medical attention, decontamination, or release is only a passing phase of the emergency situation although it is most important one. Some controversy exists in the case of a contaminated person who requires medical treatment—which should come first, medical aid or decontamination? This question, of course, does not have a simple answer.

Speaking on medical effects, G. Voelz (U.S. Atomic Energy Commission, Idaho) stated that "The atomic energy industries to date have not experienced acute accidental exposures from internal emitters (any radioactive chemical entering the body either through the skin, pulmonary, or gastrointestinal tract) resulting in an acute or dramatic radiation injury similar to the direct external radiation exposures which produce the dramatic acute radiation syndrome." The concern regarding internal emitters is related more to the continuing radiation dose which may produce late pathological effects.

Inhalation of radioactive particulates or aerosols by workers has been the most common and important source of internal deposition in atomic energy installations. In the case of contaminated wounds, excision has been practiced most frequently when plutonium-239 was the contaminant. To evaluate the nature and amount of internally deposited radioactive material, G. V. LeRoy (University of Chicago) remarked that, at the outset, it is most important to collect all urine passed by each person from the time he escapes—or is removed—from the site of the accident. Depending on the circumstances, radio-assay of the first urine voided may be of great value in estimating the accidental burden of radioactive material.

The art and science of methods for decontaminating equipment and materials have been vigorously pursued for the last two decades. L. Gemmell (Brookhaven) reviewed older as well as some new techniques, such as shot blasting. Speaking on maximum permissible levels of surface contamination, W. R. Bush (Chalk River, Canada) pointed out that these levels varied by a factor of 1000 for alphas and 100 for betas among the various countries that use radioactive isotopes. He also developed data showing that, for a given surface contamination of a material, the inhalation hazard varied by a factor of 1,000,000, with carbon-14 at the lowest limit and plutonium-239 at the upper limit. J. Maloney (Edgewood Arsenal, Edgewood, Maryland) reported on new effective procedures of major outdoor decontamination under cold weather and winter conditions. (Many portable radiation measuring instruments fail to operate while at low temperatures.)

The spread of alpha contamination, which is caused by a nonnuclear explosion (chemical part) of atomic weapons, has been a subject of concern for many years. The most extensive measurements ever made in this field were reported on for the first time by W. Johnson, Sr. (Eberline Instrument Company). The detonations were designed to simulate conditions of storage, transportation, and handling of plutonium-bearing weapons. Surveys were performed with both alpha and gamma instruments at distances up to 16 kilometers. As one might expect, drastic changes in the contamination patterns were observed from one test shot to another.

The generation and disposal of waste in emergency decontamination is of little consequence in most accidents involving radioactivity (R. O'Brien, General Electric Company, Idaho). This is due in part to the well-established waste disposal channels. In unusual situations such as the...
The abc's of Lab Safety

TSI
(Time Sterile Indicator)

Begin and end with TSI

Conversion Label

In all biological functions, preparation of glassware should start with a TSI Conversion Label that shows the word "CONTAMINATED" to identify its condition.

When glassware is sterilized, the term "CONTAMINATED" is converted to the word "STERILE," thus eliminating human errors and articulating service product has had.

All specimens are considered "CONTAMINATED" and sterilizing should be repeated before dangerous material is disposed of.

The TSI Conversion Label is the only label showing a color change at 250° F. after 15 minutes in the autoclave.

Leading laboratories now use this system to safeguard the health of their personnel.

Write today for samples and complete description.
PROFESSIONAL TAPE CO., INC.
365H BURLINGTON RIVERSIDE, ILLINOIS

MICRO MANIPULATORS

Miniature Micro Manipulator
$125

MK-2
XYZ Horizontal & Tilting Movements
$290

Singer Microdissector
$350

ERIC SOBOTKA Company, Inc.
112 West 40th Street, New York, N.Y. 10018 . . 212, Wi. 7-9216

SL-1 reactor incident where, after 5 months' decay, about 3500 curies of fission products were distributed as contamination throughout the reactor building and its environs, the use of a local waste disposal site saved more than 300 man-rem of exposure. It is estimated that the cumulative total whole-body dose of 1000 rem was received by those who were involved in the cleanup. The cost of cleanup was $1 million, not counting the cost of volunteer and Army workers.

R. Gallagher (Applied Health Physics, Pittsburgh) reported a wide range of restoration effort for the decontamination of radium spills in medical situations. In one situation an entire building had to be demolished. There is on the average one radium contamination incident a week in the United States.

Unlike many types of accidents, those involving radiation can go undetected for an extended period of time. Such delays can lead to considerable spread of the contamination.

The topic of public relations was assigned to the well-known science reporter, Robert S. Kleckner (Sun-Times, Chicago), rather than to an institutional public relations person.

Kleckner stated that the first step in reporting an accident is to avoid any type of censorship and to get the facts to the people as quickly and simply as possible. If there is a hazard beyond the confines of an installation, it should be stated that this is so and how great it is. The public should be informed about the precautions to be taken. There should be a steady flow of information to the news media until the story has been covered from all angles. There are reassurances even in bad radiation mishaps; the good as well as the bad should be brought out. The American public has never panicked when it knew the truth immediately.

Preplanning and preparedness are the keys to reducing the deleterious effects of accidents. R. Landauer (Cook County Hospital, Chicago) and G. V. LeRoy (University of Chicago) spoke on hospital preparedness but differed greatly on the approach. LeRoy stressed preplanning between a given radiation installation and a nearby hospital for the care of injuries that may occur. Landauer, on the other hand, stressed the need for a simple plan for all hospitals because accidents, especially transport accidents, may occur anywhere.
Emergency situations produce anxieties in those who are directly involved. D. Oken (Chicago), a psychiatrist, talked on mental preparedness of emergency personnel, both as individuals and as groups. Emergency teams must be suffused with a strong *esprit de corps*; members of a group with high morale become capable of carrying out tasks that are personally unappealing or even severely stressful. The group may admit to a certain degree of internal fear, but disparagement of the group itself or self-protective avoidance of responsibilities to one's co-workers is intolerable. Individuals who transgress these limits must be excluded. Panic, however, is rare. Little was seen at Hiroshima or Nagasaki. Emergency teams should be supplied with a maximum of correct information and be trained in the most helpful methods of communicating this to victims. The antidote to scare stories and rumors is information. Even if the news is bad, it is always reassuring to know that you know the worst. On the question of prevention, Oken pointed out that accidents tend to occur in clusters during periods in which other signs of psychological stress are evident—the accident syndrome. Subtle changes in the behavior pattern of an individual may be precursors to a major accident.

In the event of a radiation accident that cannot be handled by the organization in which it occurs, there are some private organizations that might be called in. In addition to these, the U.S. Atomic Energy Commission has a Radiological Assistance Program. Zintz (U.S. Atomic Energy Commission, Washington) and Brobst (U.S. Atomic Energy Commission, Chicago) reported on the program which is capable of responding to a radiological emergency upon request 24 hours a day anywhere in the United States. During the last 3 years 223 responses to requests for radiological assistance were made. Most of these (40 percent) involved transportation incidents.

The Radiological Health Division, U.S. Public Health Service, has a somewhat broader program, although it too has Radiological Assistance Teams. R. Moore (U.S. Public Health Service, Dallas) and L. Thomas (U.S. Public Health Service, Chicago) outlined the role of the U.S. Public Health Service in the radiation area along with its traditional role of pro-
König & Klippel: THE RAT BRAIN
A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brainstem

The atlas presents the details of a rat's functional neuroanatomy by a series of photographs of frontal and sagittal sections, placed side by side with line drawings of the same structures. These line drawings enable the investigator to a) orient himself by means of an easy-to-follow three-dimensional coordinate system, b) determine the precise location of specific structures, and c) determine the specific functions associated with these structures. Since the rat is the most frequently used animal in current bio-medical research, Drs. König & Klippel perform here a vital and lasting service to modern researchers in many fields.

1963 170 pp., 129 fgs. $15.00

THE WILLIAMS & WILKINS COMPANY
428 E. PRESTON STREET
BALTIMORE, MARYLAND 21202

3–5. American Assoc. of Pathologists and Bacteriologists, annual, Chicago, Ill. (E. A. Gall, Dept. of Pathology, Cincinnati General Hospital, Cincinnati 29, Ohio)
4. Arizona Acad. of Science, Tempe. (H. B. Whitehurst, Dept. of Chemistry, Arizona State Univ., Tempe)
3–8. International Acad. of Pathology, annual, Chicago, Ill. (F. K. Mostofi, Armed Forces Inst. of Pathology, Washington, D.C. 20012)
5–10. Asia-Pacific Acad. of Ophthalmology, 2nd congr., Melbourne, Australia. (R. N. Mellor, 82 Collins St., Melbourne Cl)
7–11. Applied Mathematics and Mechanics, Giessen, Germany, (K. Maruhnacht, Mathematisches Institut, Justus Liebig Univ., Giessen)
9–11. Southwestern Psychological Soc., annual, San Antonio, Tex. (C. C. Cleland, 2104 Meadowbrook Dr., Austin, Tex. 78703)
9–13. Roentgen Congr., German, Wiesbaden, Germany. (H. Lassen, Deutscher Röntgenkongress, Fichterplatz 20 III, Mainz, Germany)
10. Natural Phenolic Compounds, symp., Tokyo, Japan. (M. Shimokoriyama, Dept. of Botany, Univ. of Tokyo, Tokyo, Japan)
12. Industrial Fibers, European inst., Milan, Italy. (F. Tommy-Martin, 40 rue du Stand, Geneva, Switzerland)
12–13. American Soc. for Artificial Internal Organs, Chicago, Ill. (B. K. Kusserow, Dept. of Pathology, Univ. of Vermont College of Medicine, Burlington)
12–17. Society of Motion Picture and Television Engineers, semiannual technical conf., Los Angeles, Calif. (J. M. Waner, Eastman Kodak Co., 6706 Santa Monica Blvd., Hollywood 38, Calif.)
12–18. Chemistry of Natural Products, intern. symp., Kyoto, Japan. (Science Council of Japan, Ueno Park, Tokyo, Japan)
13–15. Microelectronics, 3rd annual symp., St. Louis, Mo. (T. F. Murtha, P.O. Box 4104, St. Louis, Mo. 63136)
13–16. American Acad. of General Practice, Atlantic City, N.J. (M. F. Cahal, Volker Blvd. at Brookside, Kansas City 12, Mo.)
13–16. Industrial Medical Assoc. and American Assoc. of Industrial Nurses, Pittsburgh, Pa. (C. D. Bridges, 55 E. Washington St., Chicago, Ill. 60602)
14–18. Mathematical Logie, conf., Oberwolfach, Germany. (M. Barner, Mathematisches Forschungs-institut, Hebelstr. 29, 78 Freiburg im Breisgau, Germany)
15–17. Ophthalmological Soc. of the United Kingdom, annual, Dublin, Ireland. (Secretary, 47 Lincoln’s Inn Fields, London, W.C.2, England)
“Wet Method” analyses take five-and-a-half times longer...

than the accurate, low-cost Bausch & Lomb Spectrograph way

Let our Consultation Service help you evaluate the need for spectro-analytical methods in your own industrial, research or academic program. No cost or obligation, of course. Just mail the coupon.

BAUSCH & LOMB

16–17. Fiber Soc., spring meeting, Charlotte, N.C. (J. Rebenfeld, P.O. Box 625, Princeton, N.J.)
16–18. Western Psychological Assoc., annual, Portland, Ore. (J. Matarazzo, Univ. of Oregon Medical School, Portland)
17–18. Arkansas Acad. of Science, Conway. (R. R. Corey, Dept. of Botany and Bacteriology, Univ. of Arkansas, Fayetteville)
17–18. Iowa Acad. of Science, Decorah. (D. C. Foley, Iowa State Univ., Ames)
17–18. Resonance Physics, New York State section, American Physical Soc., Corning, N.Y. (J. T. Kerr, Corning Glass Works, Corning)
17–19. Association of Southeastern Biologists, 25th annual, Atlanta, Ga. (W. D. Burnanck, Dept. of Biology, Emory Univ., Atlanta)
18–23. American Ceramic Soc., 66th annual, Chicago, Ill. (ACeS, 4055 N. High St., Columbus 14, Ohio)
19–22. Association for Educational Data Systems, natl. conv., Santa Barbara, Calif. (J. Caffrey, System Development Corp., Santa Monica)
19–22. American Oil Chemists' Soc., 55th spring meeting, New Orleans, La. (AOCS, 35 E. Wacker Dr., Chicago 1, Ill.)
20–22. Radioisotope Conf., 2nd annual, Gatlinburg, Tenn. (R. T. Overman, Special Training Div., Oak Ridge Inst. of Nuclear Studies, P.O. Box 117, Oak Ridge, Tenn.)
20–24. Medical Radioisotope Scanning, symp., Athens, Greece. (E. H. Belcher, Div. of Isotopes, IAEA, Kärntnerring 11, Vienna 1, Austria)

20-24. Fluid Dynamic Aspects of Space Flight, Marseilles, France. (Fluid Dynamics Panel, NATO, 64, rue de Varenne, Paris 7, France)

20-25. American Acad. of Neurology, 16th annual, Denver, Colo. (AAN, 4307 E. 50 St., Minneapolis 17, Minn.)

21-23. Engineering with Nuclear Explosives, 3rd "Plowshare" symp., Davis, Calif. (Plowshare Symp. Committee, Lawrence Radiation Laboratory, Bldg. T-105, P.O. Box 808, Livermore, Calif.)

22-24. Institute of Electrical and Electronics Engineers, 16th annual southwestern conf., Dallas, Tex. (F. E. Brooks, Jr., Military Electronics Div., Ling Temco Vought, P.O. Box 6118, Dallas 75222)

23-25. Ohio Acad. of Science, Cleveland, Ohio. (J. H. Melvin, 505 King Ave., Columbus 1, Ohio)

24. Mississippi Acad. of Sciences, Columbus. (C. O. Sheely, Mississippi State Univ., State College)

24-25. Chemistry of Microbial Products, symp., Tokyo, Japan. (H. Umezawa, Inst. of Applied Microbiology, University of Tokyo, Hongo, Tokyo)

24-25. South Dakota Acad. of Science, Sioux Falls. (T. Van Bruggen, Dept. of Botany, Univ. of South Dakota, Vermillion)

26. Georgia Acad. of Science, Athens, (T. W. Kethley, Georgia Inst. of Technology, Engineering Experiment Station, Atlanta 13)

26-30. Cereal Chemists, 49th annual, Toronto, Ont., Canada. (N. G. Irvine, Grain Research Laboratory, 190 Grain Exchange Bldg., Winnipeg 2, Canada)

26-30. AAAS, Southwestern and Rocky Mountain Div., Lubbock, Tex. (M. G. Anderson, P.O. Box 97, University Park, New Mexico 88070)

27-29. American Assoc. for Thoracic Surgery, Montreal, Quebec, Canada. (AATS, 311 Carondelet West, 7730 Carondelet Ave., St. Louis, Mo. 63105)

28-30. Dallas-Southwest Industrial Trade Fair, Dallas, Tex. (C. L. Wells, P.O. Box 26010, Dallas 26)

30-1. Institute of Hospital Administrators, annual, Edinburgh, Scotland. (IHA, 75 Portobello Place, London, W.C.1, England)

30-1. Zonal Centrifugation Systems, Oak Ridge, Tenn. (F. C. Von der Lage, Office of Industrial Cooperation, Oak Ridge Natl. Laboratory, P.O. Box X, Oak Ridge, Tenn. 37831)

30-2. Agricultural History Soc., annual, Cleveland, Ohio (A. G. Bogue, History Dept., Univ. of Iowa, Iowa City)

30-2. American Phys. Assoc., 22nd annual, Los Angeles, Calif. (ACPA, Parker Hall, Univ. of Missouri, Columbia 65202)
You can achieve images like this routinely

The new Carl Zeiss Electron Microscope EM-9 can easily be operated by the scientist or the technician. Everything has been done to safeguard against operational errors. The entire control system is set up so that every essential control for manipulating the instrument is right at hand. Two operators can sit comfortably and observe the image on the luminescent screen through any one of three windows. The screen image can also be viewed through a microscope having a magnification of 10x.

In routine operations resolution is better than 20Å, and under optimum conditions—10 to 12Å.

The image-forming system uses three electromagnetic-type electron lenses: the objective, intermediate lens and projector. The objective is equipped with an electrostatic correction system known as the “Stigmator.” Distortion-free electron micrographs can be made in four fixed steps. 1500x, 5000x, 16,000x and 35,000x. Continuous magnification from 0 to 35,000x is also possible.

A novel principle for adjusting image brightness simplifies the electronics in the EM-9 considerably. The tele-focus cathode delivers a constant beam current of 40μA at a constant beam voltage of 60kV. The beam is oscillated across a central aperture at high frequency. Varying the amplitude of frequency varies the length of time the beam remains over the aperture and hence the total energy of the beam.

With the EM-9 it is possible to take stereo electron micrographs by tilting the specimen. Electron diffraction images can be obtained by using the Boersch beam configuration. An automatic exposure timer and an automatic vacuum system are now available for the first time as accessories. Write Dept. SC for further details. Complete service facilities available.

CARL ZEISS, INC.
444 Fifth Avenue, New York, N.Y. 10018
Branch Offices in Atlanta, Chicago, Los Angeles, San Francisco, Seattle

CARL ZEISS
West Germany

The Great Name in Optics
In Canada: Toronto, Montreal, Winnipeg, Vancouver