FATHER TIME
IMAGE-MAKER

A REALITY. Rapid visualization and location of gamma-emitting isotopes in organs and areas of the body—Pho/Gamma Scintillation Camera from Nuclear-Chicago. Thoroughly field-tested, proved reliable.

SPEED WITH SENSITIVITY. Up to ten times faster than a photomechanical scanner—even our own Pho/Dot—in producing and recording gamma images.

NEW INSIGHTS. Rapid-sequence, stop-motion pictures to depict dynamic processes, such as the flow of labelled compounds into and out of an organ.

MORE INFORMATION? From your Nuclear-Chicago sales engineer. Or write us.

NUCLEAR-CHICAGO
A DIVISION OF NUCLEAR-CHICAGO CORPORATION
349 Howard, Des Plaines, Ill. 60018 U.S.A.

In Europe: Donker Curtiusstraat 7
Amsterdam W, The Netherlands

Scientists and engineers interested in challenging career opportunities are invited to contact our personnel director.
ADVANCES IN CONTROL SYSTEMS
edited by G. T. Leonides
(A366) Volume 1, December 1964, 365 pp., $13.00

ADVANCES IN COMMUNICATION SYSTEMS
THEORY AND APPLICATIONS
edited by A. V. Balakrishnan
(A368) Volume 1, December 1964, about 325 pp., $11.50

STATISTICAL THEORIES OF SPECTRA: FLUCTUATIONS
edited by Charles E. Porter
papers demonstrate the use of statistical methods for investigation fluctuations in spectra
places the papers in proper perspective and introduces the subject and the current language of statistical studies of spectra by means of an extensive introductory chapter
(P462) January 1965, about 575 pp., in preparation

PHYSICAL PROPERTIES OF MAGNETICALLY ORDERED CRYSTALS
edited by E. A. Turov
translated from the Russian by Scripta Technica, Inc. translation edited by A. Tylkiewicz and S. Chomel
presents a unified phenomenological theory of spin waves in ferromagnets, antiferromagnets, and weak ferromagnets
demonstrates the use of phenomenological spin wave as a tool for determining qualitative and quantitative relationships of various properties of magnetic crystalline substances
(T820) December 1964, about 225 pp., $10.00

CONCEPTS IN QUANTUM MECHANICS
by F. A. Koeppner
stresses the description of symmetry properties without use of group theory
treats time reversal invariance, superselection rules, and the interaction picture
includes a discussion of problems only when needed for illustration of basic concepts
(K060) December 1964, 338 pp., $9.75
ANALYZING DELICATE TRANSPARENT STRUCTURES?

Leitz Model SM-f Phase Contrast Microscope

Every diagnostician who routinely must observe and analyze unstained specimens, including thick preparations such as smears, will find this the ideal precision instrument. The Leitz SM-f Phase Contrast Microscope is medium priced, convenient to use, and versatile.

Ruggedly constructed for day-to-day dependability, the Model SM-f Phase Contrast Microscope has coaxial coarse and fine adjustments, scales and verniers to align the mechanical stage, and rack and pinion adjustment of condenser height.

Improved optical design and use of new optical glass produce superior quality images. The Phaco® phase contrast condenser is new, and objectives, both achromatic and oil immersion, were specifically designed for use with this condenser. The Phaco condenser incorporates a wide annular diaphragm and a revolving disc with different diameter phase rings—permitting easy matching of a phase ring with the chosen objective.

The versatile Leitz Model SM-f Phase Contrast Microscope also serves as a student microscope in the biology laboratory. The interchangeability of objectives and condensers permit routine microscopy with a wide variety of illumination techniques.

Write for further information about this newest addition to the Leitz catalog of fine diagnostic and teaching instruments.
If your measurement problem is caused by unrelated activity

Signal Averaging Can Be The Answer

Signal averaging with the Mnemotron CAT 400B Computer of Average Transients is an effective way of handling measurement of small signals masked by random background activity. The CAT is a true averaging instrument. As the signal is repeated, with respect to a time reference, it is summed arithmetically. The activity which is unrelated to the time reference, tends to be positive as often as negative and cancels out, leaving only the event of interest to improve in definition as it is repeated. The CAT stores data in a built-in 400-address memory and provides continuous monitoring on a 'scope. The CAT output is compatible with analog readout units such as X-Y plotters, and with digital instruments including magnetic tape storage systems, general purpose computers and digital readout devices. Here are three typical applications of the CAT:

Analytical Chemists are using CATs to average spectrometer output and essentially increase the resolution. With the spectrometer at high gain, instrument noise will frequently obscure the output. The CAT averages the spectrometer output signal and, with noise cancelled out, effectively increases the sensitivity.

Neurologists average minute brain potentials that are evoked by sensory stimuli. These potentials are typically obscured by random electrical activity. The CAT, by averaging individual responses, will "separate" the evoked response from the random activity for storage and processing.

Seismologists average seismic signals — artificially produced by dropping a three or four ton weight to the earth. This technique, used in oil exploration, provides investigation of the earth's strata by creating sound waves that are reflected differently by the various strata. The CAT averages the signals which in this case are normally masked by anything from heavy traffic vibration to miniature earthquakes.

When the data obtained must be reduced, there are CAT accessories available for computing various histograms, for auto-or cross-correlation of signals, and for magnetic tape recording. TMC engineers have aided many experimenters with their measurement problems — they will be glad to discuss yours. Signal averaging with the CAT might be the answer.

Specifications and typical applications are all contained in a new 30-page brochure; for your copy contact any TMC office or write Technical Measurement Corporation, Mnemotron Division, 441 Washington Ave., North Haven, Connecticut.

American Meteorological Society, the Central Radio Propagation Laboratory of the National Bureau of Standards, and the U.S. Weather Bureau. It was organized under the general chairmanship of J. S. Marshall (McGill University and chairman of the Joint Committee of the URSI-UGGI on Radio Meteorology). Members of the Program Committee were John A. Saxton, chairman (United Kingdom Scientific Attache to the United States and vice chairman of Commission II, URSI), Stuart Bigler (U.S. Weather Bureau), David Atlas (Air Force Cambridge Research Laboratory), Jack W. Herbstreit (Central Radio Propagation Laboratory and secretary of Commission II, URSI), and J. S. Marshall. It is believed that the objective of the conference, to strengthen the community of interest among the many specialized fields in radio meteorology, was realized. A limited number of copies of the proceedings volume are available from the American Meteorological Society, 40 Beacon St., Boston, Massachusetts.

JACK W. HERBSTREIT
Central Radio Propagation Laboratory,
National Bureau of Standards,
Boulder, Colorado

Forthcoming Events

January

6-9. Psychopharmacological Conf., Czechoslovak Medical Soc., Psychiatry Section, Jesenik Spa. (M. Vojtechovsky, Budejovicka 800, Pavilion A1, Prague, Czechoslovakia)

(Marine Biological Assoc. of India, Marine Fisheries P.O., Mandapam Camp, South India)

18-20. Solar Radiation Simulation, intern. conf., Los Angeles, Calif. (H. F. Iller, Inst. of Environmental Sciences, 34 S. Main St., Mount Prospect, Ill.)

19. Cor Pulmonale, New York Heart Assoc., New York, N.Y. (NYHA, 10 Columbus Circle, New York 10019)

20-22. Instrumentation, College Station, Tex. (P. T. Eubank, Chemical Engineering Dept., Texas A&M Univ., College Station)

25. Bibliographical Soc. of America, New York, N.Y. (Mrs. H. C. Ralph, P.O. Box 397, Grand Central Station, New York 10017)

22-1. Earthquake Engineering, 3rd world conf., Auckland and Wellington, New Zealand. (Administrative Secretary, Third World Conf. on Earthquake Engineering, P.O. Box 5180, Wellington)

22-23. Blood, annual symp., Detroit, Mich. (W. H. Seegers, Dept. of Physiology and Pharmacology, Wayne State Univ. College of Medicine, Detroit)

25-29. American Soc. for Testing and Materials, steel meeting, Mexico City, Mexico. (H. H. Hamilton, Public Rela-
NOW there are three laboratory-type pH Meters available from us. All are direct-reading (7" scale), line-operated, drift-free, temperature compensated, and feature fast warm-up time... quick response!

Model 7403-A1 provides both continuous and expanded ranges for pH and millivolts. It has 5 scales, 7 ranges, 6 controls. You can obtain accurate temperature compensation on any 2 pH span... switch from one 2 pH span to any other without re-buffering! A rotatable numeral-wheel, window-indexed at mid-scale, lets you identify the expanded span in use.

Model 7405-A1 features an expanded scale covering the span most frequently used—in addition to the normal 0 to 14 pH range. It, too, lets you select any 2 pH span you wish over the entire range. Very convenient for repetitive analyses.

Model 7401-A1 is a standard pH Meter with 3 scales, 5 ranges, 4 controls... popular in laboratories throughout the world.

Now there are three laboratory-type pH Meters available from us. All are direct-reading (7" scale), line-operated, drift-free, temperature compensated, and feature fast warm-up time... quick response!

Model 7403-A1 provides both continuous and expanded ranges for pH and millivolts. It has 5 scales, 7 ranges, 6 controls. You can obtain accurate temperature compensation on any 2 pH span... switch from one 2 pH span to any other without re-buffering! A rotatable numeral-wheel, window-indexed at mid-scale, lets you identify the expanded span in use.

Model 7405-A1 features an expanded scale covering the span most frequently used—in addition to the normal 0 to 14 pH range. It, too, lets you select any 2 pH span you wish over the entire range. Very convenient for repetitive analyses.

Model 7401-A1 is a standard pH Meter with 3 scales, 5 ranges, 4 controls... popular in laboratories throughout the world.

Model 7403-A1:
- Scales: 0-14 pH
- Reproducibility: 0.001
- 2 pH span: 0.001
- 0-700 mv: 0.1
- 0-1400 mv: 0.1
- 0-200 mv: 0.2

Model 7405-A1:
- Scales: 0-14 pH
- Reproducibility: 0.003
- 6-8 pH
- 0.003
- 0-700 mv: 1.0
- 0-1400 mv: 2.0

Scientific Glass Apparatus
Bloomfield, New Jersey

Branches:
- Boston 16 Mass.
- Danbury 1 Conn.
- Elk Grove Village 1 Ill.
- Fullerton 1 Calif.
- Philadelphia 2 Pa.
- Silver Spring 1 Md.
- Syracuse 1 N.

Highly accurate
...especially new model 7403-A1
for research, medicine and industry

Leeds & Northrup
Laboratory-type
PH Meters

Now there are three laboratory-type pH Meters available from us. All are direct-reading (7" scale), line-operated, drift-free, temperature compensated, and feature fast warm-up time... quick response!

New Model 7403-A1 provides both continuous and expanded ranges for pH and millivolts. It has 5 scales, 7 ranges, 6 controls. You can obtain accurate temperature compensation on any 2 pH span... switch from one 2 pH span to any other without re-buffering! A rotatable numeral-wheel, window-indexed at mid-scale, lets you identify the expanded span in use.

Model 7405-A1 features an expanded scale covering the span most frequently used—in addition to the normal 0 to 14 pH range. It, too, lets you select any 2 pH span you wish over the entire range. Very convenient for repetitive analyses.

Model 7401-A1 is a standard pH Meter with 3 scales, 5 ranges, 4 controls... popular in laboratories throughout the world.

Model 7403-A1:
- Scales: 0-14 pH
- Reproducibility: 0.001
- 2 pH span: 0.001
- 0-700 mv: 0.1
- 0-1400 mv: 0.1
- 0-200 mv: 0.2

Model 7405-A1:
- Scales: 0-14 pH
- Reproducibility: 0.003
- 6-8 pH
- 0.003
- 0-700 mv: 1.0
- 0-1400 mv: 2.0