LETTERS
Viet Nam and the Professors: C. A. Williams; R. Buckhout; Rank Discrimination: M. A. Benarde; Lullaby for Male Voices: M. Dorman .. 498

EDITORIAL
The Productive Environment for Innovation .. 501

ARTICLES
Strong Inference and Weak Interactions: E. M. Hafner and S. Presswood 503

An episode in nuclear physics offers an example of the complex interplay between theory and experiment.

Networks of Scientific Papers: D. J. de Solla Price .. 510

The pattern of bibliographic references indicates the nature of the scientific research front.

Saturation: A Problem Evaded in Planning Land Use: G. Mac ink o 516

The environmental consequences of sustained population growth have yet to be recognized by planners.

NEWS AND COMMENT
Stony Brook: New York Institution Is Stirring Attention—Indirect Costs: A New Formula .. 522

BOOK REVIEWS
Vision and Value Series: A. H. Riesen ... 527

Elements of Cloud Physics, reviewed by N. H. Fletcher; other reviews by A. B. Klots, J. E. McDonald, W. J. Hamer, D. I. Bolef, R. G. Fleagle, S. C. Rittenberg, J. B. Cruz, Jr., R. W. Michie, E. Colson, B. N. Parlett 527

REPORTS
Carbon-14 Content of 18th- and 19th-Century Wood: Variations Correlated with Sunspot Activity: M. Stuiver ... 533

Germanium and Silicon Disulfides: Structure and Synthesis: C. T. Prewitt and H. S. Young ... 535

Polonium-210 Content of Mainstream Cigarette Smoke: T. F. Kelley 537

Triploidy in Parthenogenetic Species of the Teiid Lizard, Genus Cnemidophorus: L. A. Pennock ... 539
Blepharisma Intermediuin: Ultraviolet Resistance of Pigmented and Albino Clones: A. C. Giese .. 540
Circadian Rhythm in Pineal Serotonin: Effect of Monoamine Oxidase Inhibition and Reserpine: S. H. Snyder and J. Axelrod .. 542
Biochemical Polymorphism in Ants: J. H. Law, E. O. Wilson, J. A. McCloskey 544
Desert Locusts: Sexual Maturation Delayed by Feeding on Senescent Vegetation: P. E. Ellis, D. B. Carlisle, D. J. Osborne .. 546
Roots as Organs of Assimilation of Sulfate: J. S. Pate .. 547
Adaptive Enzyme Synthesis: Its Inhibition as a Possible Analogue of Immunological Tolerance: D. W. van Bekkum and H. T. M. Nieuwerkerk .. 548
Diffraction and Visual Acuity of Insects: J. Palka .. 551
Visual Resolution and the Diffraction Limit: H. B. Barlow .. 553
Sound Production by Cichlid Fishes: A. A. Myrberg, Jr., E. Kramer, P. Heinecke 555
Orientation of Ambystoma maculatum: Movements to and from Breeding Ponds: C. R. Shoop .. 558
Lateral Hypothalamic Stimulation in Satiated Rats: T-Maze Learning for Food: J. Mendelson and S. L. Chorover .. 559
Temperature Independence of an Arbitrary Temporal Discrimination in the Goldfish: P. Rozin .. 561
Geniculate Unit Responses to Sine-Wave Photic Stimulation during Wakefulness and Sleep: L. Maffei, G. Moruzzi, G. Rizzolatti .. 563
Comments on Reports: Melphalan and Antigenic Type of Bence Jones Proteins in Myeloma: E. F. Osserman; B. J. Lee, L. Kornegold, M. J. Weiner; D. E. Bergsagel, P. J. Migliore, K. M. Griffith; Changes in the Tail Feathers of the Adolescent Lyrebird: L. H. Smith .. 564

MEETINGS

Tsunami Runup: United States–Japan Cooperative Science Program:
W. G. Van Dorn; Forthcoming Events .. 566

COVER

Proposed structural network for a new city, based upon a system of life, circulation, growth, and transformation. The network starts at the center with a simple orthogonal organization that grows outward, changing in geometry, dimensions, and use, while preserving its unity and continuity. The system can suffer topological transformation as the result of changes in time, topography, and human needs, without losing its basic structural properties. See book review of Structure in Art and in Science, page 527. [Eduardo Catalano]
The Productive Environment for Innovation

The Department of Defense and the Arthur D. Little Company have recently conducted a stimulating historical study of the conditions that foster successful research, developments, or inventions—the key ideas that have given to major weapons their high operational capabilities. The results give useful, even if still tentative, leads to understanding the elements of the laboratory environment that are most conducive to successful innovation.

The physical scientists who worked on the study sought initially for objective characteristics of a productive laboratory which they could count and measure. They found, however, that these characteristics appeared to be far less important than were attitudes, motivation, personal relations, and the way in which the laboratory was managed.

They found, too, and with some surprise, that improved weapons come chiefly through many relatively small steps rather than a few giant ones. The transistor and the high-temperature shock tube have been called major breakthroughs, but more typical examples were the development of ablative cooling, magnetic (instead of jewel) bearings for gyro, the low-cavitation propeller, and zone-melting as a technique for purifying metals.

Typically, these and the other achievements they studied occurred only if three elements were all present: a clearly understood need; a source of relevant ideas, information, insight, and experience; and men and money available to commit to the job. In a few cases a new idea appeared so promising that it was pushed through to successful development even though a specific need was not yet apparent, but the trigger that set off the burst of activity that led to a useful new development was most commonly the explicit recognition of a need. Ideas not related to a recognized need were likely to lie fallow. Necessity still seems to be the mother of invention.

In a few instances the developmental activity was funded through a contract specifically intended for that purpose. More usually, after the need and the idea were brought together, money was borrowed or taken from some other source. Retrospectively, it is easy to justify these diversions of funds. A need and a promising idea for its solution existed. In formal cost/effectiveness estimates typically showed the potential value multiplied by the probability of success to be 10 to 100 times the predicted cost. They were good gambles, so instead of waiting 6 to 12 months for a new contract, the company or university paid the expenses from its own funds, or borrowed money intended for related work or other activities, or (in a few cases) used funds that had been made available on a discretionary basis. The desirability is obvious of providing effective laboratories with funds that are under the discretionary control of the men who are directly acquainted with the need, with what seems to be a good idea, and with the probability of its successful development.

The Department of Defense is to be commended for this study, and for its planned continuation. It might have allowed the history to stay buried. It is good that it did not, for now it has some stimulating suggestions for improving its own research and development management, and some of these suggestions will be appropriate to other agencies and laboratories. We will continue to spend much on research and development; critical analysis of past accomplishments can help us to spend future money more effectively.—DAEL WOLFE