LETTERS
Parapsychology Not Guilty: J. B. Rhine; C. G. Morris, W. S. Taylor;
What Professors Are For: N. Gutman; R. Roy; Project Orion:
H. P. Green; D. J. Bolet; R. W. Deutsch; Endorsement of H.R. 5191:
M. B. Vischer; Homo habilis: A. Montagu; P. V. Tobias; Teaching
by Research Fellows: D. T. Denhardt; Sap Pressure in Plants:
at the End of the Cretaceous Period: N. D. Newell; Severe-Weather
Forecasting: W. S. Barney; “Wasted” Water: R. J. Baldauf;
Malaria Control and Economics: D. J. Pletsch

EDITORIAL
Translation of Scientific Literature

ARTICLES
The Physical Basis of Life and Learning: F. O. Schmitt
Electrophoretic Variation in Enzymes: C. R. Shaw
Of Whales and Whaling: N. Simon
A New Science City in Siberia: H. Koprowski et al.

NEWS AND COMMENT
Soviet-American Exchange: Viet Strife Casts Chill on Expansion Possibilities—
Drug Abuse: New Controls—COSPUP: Brooks Succeeds Kistiakowsky—
Smithsonian Bicentennial

BOOK REVIEWS
Samples from English Cultures, reviewed by D. M. Schneider; other reviews by
F. W. McLafertry, D. A. Karnofsky, P. H. Klopfer, P. B. Sears,
R. B. MacLeod, W. Good; New Books

REPORTS
Ultraviolet Reflectivity of Mars: D. C. Evans
Merrihueite, a New Alkali-Ferromagnesian Silicate from the Mezö-Madaras
Saturn’s Ring and the Satellites of Jupiter: Interpretations of Infrared Spectra:
T. Owen
Antarcticite: A New Mineral, Calcium Chloride Hexahydrate, Discovered in Antarctica: T. Torii and J. Ossaka ... 975

Simple Microcentrifuge for Use in the Field: B. Holmstedt 977

Lidar Observation of Cloud: R. T. H. Collis 978

Major Urinary Protein Complex of Normal Mice: Origin: J. S. Finlayson et al. 981

Double Mating: Its Use to Study Heritable Factors in Dental Caries: R. H. Larson and M. E. Simms .. 982

Serum Prealbumin: Polymorphism in Man: M. K. Fagerhol and M. Brand 986

Hurler’s Syndrome: Demonstration of an Inherited Disorder of Connective Tissue in Cell Culture: B. S. Danes and A. G. Bearn 987

Response of the Pupil to Steady-State Retinal Illumination: Contribution by Cones: J. ten Doesschate and M. Alpern ... 989

Primary Immune Reactions in Organ Cultures: A. Globerson and R. Auerbach 991

Brucite in Carbonate Secreted by the Red Alga Goniolithon sp.: R. F. Schmalz 993

Inhibition of L1210 Tumor Growth by Thymus DNA: J. L. Glick and A. R. Goldberg 997

Focal Antibody Production by Transferred Spleen Cells in Irradiated Mice: J. H. L. Playfair, B. W. Papermaster, L. J. Cole 998

Interocular Transfer in Goldfish: Color Easier than Pattern: D. J. Ingle 1000

Vocalization Evoked from the Optic Lobe of a Songbird: J. L. Brown 1002

MEETINGS

Electromagnetic Relays: D. D. Linglebach; System Theory: L. Shaw; Forthcoming Events 1004

COVER

Print from an old book, depicting one of the many dangers encountered in whale fishery during the 19th century. The whale is a Greenland whale (Balaena mysticetus). Its home was mainly in Arctic waters and off the shores of Greenland. However, the species is now almost extinct because of the whaling industry. See page 943. [The Naturalist’s Library (Bohn, London, 1861), vol. 26, p. 114; courtesy of Raymond H. de Lucia, Museum of Natural History, New York]
Translation of Scientific Literature

The use of English as the world's scientific language has been fostered in several ways. The number of high-quality scientific contributions of the English-speaking peoples makes it expedient for scientists generally to know the language. Scientists in other countries, wishing maximum attention for their research publications, also have written in English.

The importance of English is further enhanced by the availability of translations of scientific material appearing originally in other languages. The situation and the needs can be estimated from the broad sample of the world's scientific literature provided by *Chemical Abstracts*. In 1964 this service found percentages for the original language of articles abstracted by it were English, 44; Russian, 20; German, 9; Japanese, 8; French, 5; and Italian, 2. Analysis of *Physics Abstracts* provides another measure and a different distribution. In 1961 the percentages for the original language of articles abstracted by that service were English, 68; Russian, 15; French, 7; German, 6.

Since Russian is now the second language of science, it is important that contributions in that language be made available in English. Opinion among U.S. scientists is divided concerning the value of the Russian literature. Our physicists are among those who regard it most highly.

The translation program of the American Institute of Physics is thus of particular significance. Started on a modest scale in 1955, it was subsidized by the National Science Foundation. The program is now self-sustaining, and ten principal Russian physics journals are translated cover-to-cover. The publication delay is quite short—from 3 to 6 months. The most popular of the Russian translations is the *Journal of Experimental and Theoretical Physics*, with about 1300 subscribers, half of them abroad. An analysis of papers abstracted by *Physical Abstracts* indicates that 84 percent of the important Russian physics literature is being translated.

The largest effort in Russian translation of journals is being made not by a scientific society but by a profit-making organization—Consultants Bureau Enterprises Inc. This company translates 48 scientific journals on a cover-to-cover basis. Distribution of these translations to subscribers abroad constitutes 45 percent of the business. In addition to the English-speaking nations, Japan, France, and Germany are important customers.

In some areas of science, translations of Russian journals are not in great demand. As few as 250 subscribers receive translations of some geophysical material. Accordingly, a subsidy amounting to a few tens of thousands of dollars a year for each journal is required.

The Federation of American Societies for Experimental Biology is conducting an experiment in selective translation that makes sense. Some 5000 articles are scanned each year. About 600 are translated, and about 300 are printed in a translation supplement which is sent to about 13,000 subscribers.

One of the greatest single factors in the trend toward the use of English as a universal scientific language is *Chemical Abstracts*. This service abstracts much scientific literature, written in essentially all languages, and does so with unusual efficiency.

This coverage of all the literature of many fields provides an example and challenge to other aspects of the translation program. We should not be satisfied until all the important scientific literature of the world is readily available in English.—**PHILIP H. ABELSON**