LETTERS
Who Reads the Journals?: R. B. Parker; How Children Learn to Read: D. Elkind; E. J. Gibson; Half-Life of Radiocarbon: F. Johnson

EDITORIAL
Television Coverage of the Gemini Program

ARTICLES
Solar Magnetic Fields: V. Bumba and R. Howard
Study of solar magnetic fields shows the importance of large- and small-scale structure in solar activity.

Ant Venoms, Attractants, and Repellents: G. W. K. Cavill and P. L. Robertson
Secretions are used by ants in attack and defense and as chemical messengers in their social organization.

The Biophysical Problems of Photosynthesis: R. K. Clayton
Electrooptical techniques have brought clarification of physical and chemical events in photosynthesis.

NEWS AND COMMENT
Hospital Desegregation: HEW Criticized—Space: Orbiting Laboratory for Air Force

BOOK REVIEWS

REPORTS
Electron Microscopy of Fossil Bacteria Two Billion Years Old: J. W. Schopf et al.

Sands of the Mid-Atlantic Ridge: P. J. Fox and B. C. Heezen

Enrichment of Tritium by Thermal Diffusion and Measurement of Dated Antarctic Snow Samples: H. v. Buttlar and B. Wiik

Nuclear Mitochondria?: D. Brandes, B. H. Schofield, E. Anton
Mercurial-Induced Transformation of Myosin Prevented by Adenosine Triphosphate and Pyrophosphate: D. R. Kominz .. 1374
Role of Orbital Cortex in Regulation of Thalamocortical Electrical Activity: M. Velasco and D. B. Lindsley .. 1375
Sarcolemma: Transmitter of Active Tension in Frog Skeletal Muscle: S. F. Street and R. W. Ramsey .. 1379
Iodination in Relation to Thyroglobulin Maturation and Subunit Aggregation: R. W. Seed and I. H. Goldberg .. 1380
Fluorescent Contaminants from Plastic and Rubber Laboratory Equipment: H. A. Kordan .. 1382
Fatty-Tissue Changes in Rats with Acclimatization to Altitude: C. M. Blatteis and L. O. Lutherer .. 1383
Lymphocytes of Small Mammals: Spontaneous Transformation in Culture to Blastoids: S. M. Sabesin .. 1385
Kinetin-Induced Chloroplast Maturation in Cultures of Tobacco Tissue: D. A. Stetter and W. M. Laetsch .. 1387
Angiosperm Parasite and Host: Coordinated Dispersal: P. R. Atsatt .. 1389
Stridulation in Leaf-Cutting Ants: H. Markl .. 1392
Arterial Hypertension Elicited by Subpressor Amounts of Angiotensin: J. W. McCubbin et al. .. 1394
Hemolysin Production in the Development of Staphylococcal Lesions: E. A. Foster .. 1395
Comments on Reports: Melphalan Therapy and Exercise; Assessment of Drugs: N. Brock and B. Schneider; M. A. Schneiderman and M. H. Myers 1396

MEETINGS

Electromagnetic Scattering: R. L. Rowell and R. S. Stein; Forthcoming Events .. 1399

COVER

Electron micrograph of surface replica of fossil bacteria found in Gunflint chert approximately 2000 million years old. The polished rock surface was etched with hydrofluoric acid to dissolve the inorganic matrix; then it was shadowed and replicated with a platinum-carbon film. These well-preserved bacilli are morphologically similar to certain extant iron bacteria. They are among the most ancient fossils now known (about × 24,000). See page 1365. [Morton D. Maser, Harvard University]
Television Coverage of the Gemini Program

The television coverage of the manned space flights in June (GT4) and August (GT5) put one aspect of science and technology in the same league as political conventions and the World Series. The vast audiences commanded by such an effort make it important, since the time the public spends in viewing these programs represents, for many, a substantial portion of the hours it devotes to any sort of scientific or technical subject—on television or otherwise.

What did the American public see on TV about the scientific and technical aspects of the Gemini program, and what can it expect in the future?

Analysis of some 50 hours of coverage of the two flights shows that the visual reporting of GT5 was significantly better than the reporting of previous missions—a much-needed advance over the breathless chronicling of launch and splashdown, the saccharine family interviews, and the "illustrated radio" talks by technical specialists.

NBC showed the greatest change; its reporting of GT5 was outstanding in breadth of subject matter, accuracy, and visual quality. ABC, which had the best coverage of GT4, thanks to science editor Jules Bergman, maintained its breadth and accuracy but did not substantially increase its visual backup for GT5. CBS did an accurate though limited job for GT5; its coverage was of much better quality than its reporting of previous flights.

For the GT5 mission there was more emphasis everywhere on scientific and technical aspects, such as the orbital mechanics of rendezvous, visual acuity experiments, and effects of weightlessness. Visual presentation replaced many of the previous verbal descriptions—for example, the animated representation of retrofire and reentry, and a studio demonstration explaining specific impulse.

Perhaps the most significant single change was a new confidence on the part of many of the on-camera reporters. The GT4 reporting was plagued with errors, faulty interpretations, difficulty in ad-libbing, and, in one case, outright embarrassment over inability to define so simple a word as azimuth. One reporter commented, "It all gets so confusing," as he tried to explain how many sunrises and sunsets the astronauts would see in the course of their flight.

The GT5 programs showed many more reporters facing the cameras confidently, commenting accurately and in much greater detail. Obviously, much more attention had been given to preparation and backup. The television achievements for the GT5 mission rate compliments and also raise important questions. With an increasingly sophisticated audience, more frequent flights, and flights of greater duration, what will be the nature of TV coverage in the future? We will certainly see more "pool coverage"—the common use of "pickups" on launch, landing, and press conferences. But television is a competitive enterprise. How will the networks compete?

Perhaps a new day is at hand, for competition will more and more be in terms of the knowledge and skill of the reporters, and of the quality of the production teams.

It is inevitable that unexpected problems (like that of the fuel cell in GT5) will arise in the future. The network with the know-how to explain and illustrate the situation immediately, without extensive research or outside help, will take the lead in ratings.

Interpretive coverage will be another area of competition. For, except for the possibility of emergencies, launch and landing are becoming almost routine. Scientific experiments and technical innovations will make the headlines for tomorrow's flights, and the subjects of tomorrow's TV programs.

In short, the networks which excel in their scientific homework will excel in the marketplace—and deservedly so.—E. G. SHERBURNE, JR., American Association for the Advancement of Science