LETTERS
Radiation Exposure Records of Personnel: H. Blatz; Aptitude and Achievement: Differences at the Top: G. S. Kleinman; Legacy of the Flexner Report: J. T. Flynn; Webs: F. Allen .. 553

EDITORIAL
After the Manned Lunar Landing? .. 557

ARTICLES
Geophysical Observations from Nimbus I: W. Nordberg 559
Computer-Aided Instruction: J. A. Swets and W. Feurzeig 572
Chemical-Biochemical Signal and Noise: S. Freed 576

NEWS AND COMMENT
Robert Burns Woodward Awarded Nobel Prize in Chemistry for 1965: P. D. Bartlett, F. H. Westheimer, G. Biichi .. 585
Tomonaga, Schwinger, and Feynman Awarded Nobel Prize for Physics: F. J. Dyson 588

BOOK REVIEWS
Scientists in Politics: W. S. Sayre ... 595
Mach Bands: Quantitative Studies on Neural Networks in the Retina, reviewed by C. H. Graham; other reviews by R. L. Schoenfeld, J. W. Marvin and F. H. Taylor, J. Lamperti, L. P. Williams, S. W. Wellr; Reprints; Conference and Symposium Reports .. 596

REPORTS
Soudan Formation: Organic Extracts of Early Precambrian Rocks: W. G. Meinschein 601
Ribosomes: Analysis by Cesium Sulfate Gradient Centrifugation: F. M. DeFilipps 610
Reversible, Light-Screening Pigment of Elasmobranch Eyes: Chemical Identity with Melanin: D. L. Fox and K. P. Kuchnow 612
Regulation of Cockroach Fat-Body Metabolism by the Corpus Cardiacum in vitro:
A. W. Wiens and L. I. Gilbert .. 614
Glycerol Metabolism in the Human Liver: Inhibition by Ethanol: F. Lundquist et al. 616
Sperm Capacitation by Uterine Fluid or Beta-Amylase in vitro:
K. T. Kirton and H. D. Hafs 618
Herbicide Metabolism: N-Glycoside of Amiben Isolated from Soybean Plants:
S. R. Colby .. 619
Lithocholic Acid in Human-Blood Serum: J. B. Carey, Jr., and G. Williams 620
Template Activity of RNA from Antibody-Producing Tissues:
B. Mach and P. Vassalli ... 622
Collagenase: Effect on the Morphogenesis of Embryonic Salivary Epithelium in vitro:
C. Grobstein and J. Cohen ... 626
Protein Synthesis in Rat Liver: Influence of Amino Acids in Diet on Microsomes and Polysomes: A. Fleck, J. Shepherd, H. N. Munro 628
Spectrophotometer: New Instrument for Ultrarapid Cell Analysis:
L. A. Kamentsky, M. R. Melamed, H. Derman .. 630
Odorous Secretion of Normal and Mutant Tribolium confusum: M. Engelhardt, H. Rapoport, A. Sokoloff 632
Hydra: Induction of Supernumerary Heads by Isolated Neurosecretory Granules:
T. L. Lentz .. 633
Soluble Proteins of a Melanoma and Normal Skin from the Swordtail, Platyfish, and Their Hybrids: D. G. Humm and A. L. Sylvia 635
Differential-Approach Tendencies Produced by Injection of RNA from Trained Rats: A. L. Jacobson et al. 636
Nicotine: Effect on the Sleep Cycle of the Cat: E. F. Domino and K. Yamamoto 637

ASSOCIATION AFFAIRS
AAAS Annual Meeting: Evolution .. 639

MEETINGS
Insect Biochemistry: L. Levenbook; Electron-Spin-Resonance Signals and Biological Effects: F. Hutchinson; Forthcoming Events .. 643

COVER
Chromosomes in meiosis. This strange anthropomorphic configuration appeared at prometaphase in a microsporocyte. A ring of six chromosomes creates the outline of the “face.” Four bivalents form the “eyes,” “nose,” and “mouth,” giving a chromosome number of 2n = 14. This anomaly is one outcome of a study of reciprocal translocations in chromosomes of Gayophytum eriospermum (about × 5200). [Leonard B. Thein, University of California, Los Angeles]
After the Manned Lunar Landing?

Throughout history the moon has had a special place in man's consciousness. Archeological evidence indicates that prehistoric man was highly aware of the moon and its changing phases. The literature of all ages contains many references to the moon. Our satellite is still an object of unusual psychological significance. Who has not had a sense of awe and grandeur in watching a rising full moon? Its special role in emotional matters is evidenced by many popular songs of this era (see page 594). No other object in the sky—not even the sun—has received more attention. Small wonder that the adventure of traveling to the moon commands continuing interest and support. This backing seemed not to flag even when the Ranger pictures showed a desolate lunar landscape.

The deep world-wide interest in exploration of the moon gives the effort great propaganda value. Simultaneously, interest in scientific information concerning the satellite has been heightened. Such knowledge serves to increase the probability of successful missions. Also, the information is interesting in its own right. The results from unmanned missions so far have served more to stimulate curiosity than to provide answers. The pictures sent back by Rangers 8 and 9, while magnificent, have raised more questions than they have settled. It is clear that many features of the lunar surface were produced by meteorite impact. However, the pictures have not ruled out the possibility that volcanism has played a role. The presence of slump structures has been attributed by some to volcanism. Others think the structures have resulted from subsurface sublimation of ice.

The major question of the origin of the moon is no closer to being answered. Was the moon captured by Earth, or was the satellite once part of Earth? Soft-landed unmanned vehicles will provide more information about the moon, while raising new questions. Manned exploration and the return of samples to Earth may be necessary to resolve some of the puzzles.

To date the purely scientific results from our manned space program have not been impressive. With good reason, the engineering and medical aspects have been given overriding priority. In effect, our manned space program has consisted of a series of great technological stunts. One is reminded of an acrobatic act where spectators are awed by a series of difficult feats. The acrobatic team must constantly increase the complexity of its act in order to hold the audience's attention. If the John Glenn mission were repeated today, how much attention would it receive?

The Space Agency is now well advanced in its progress toward a lunar landing. Increasingly, planners are considering follow-on programs. These include more grandiose efforts toward manned exploration of the moon and attempts to explore Mars. Will the Space Agency be able to devise a continuing series of spectaculars of ascending dramatic quality? I think not. The first successful landing on the moon will be a climax. Just as succeeding cliffs of Mt. Everest, after the first ascent, have drawn diminishing attention, later lunar travel will lose its novelty.

As for Mars, how many popular songs have been written about it? On euphoric grounds alone, the paucity is not surprising—bars, chars, jars. More fundamental is the question, "How many people know where Mars is, or even care?" Perhaps man will one day go to the planet, but the psychological and emotional impact of the trip will be pale in comparison with that of the first successful landing on the moon.

—PHILIP H. ABELSON