A radio problem that may have a ten-billion-year-old solution

Activities in technology sometimes have surprising implications. For example, recent antenna tests conducted by Bell Telephone Laboratories at Holmdel, New Jersey, have apparently produced evidence about the early history of the universe.

In their radio communications studies, Bell Laboratories scientists had been using a horn-reflector antenna (employed on Project Echo and Telstar experiments) to measure the radio noise emitted by Cassiopeia A, an exploded star now surrounded by fiery gas. This and other similar measurements require accurate knowledge about or elimination of noise produced by the atmosphere, the ground, and the components of the antenna system itself. Now, noise from the Earth's atmosphere can be accurately measured and the antenna is so directional that ground noise is negligible (verified through a series of tests with a mobile transmitter). The electrical joints in the antenna system and waveguide were reworked and sealed to eliminate any possible noise due to leakage. And, an extremely accurate noise-level reference source—the best produced so far—was designed and built especially for this project.

But there was some noise which could not be explained. It was stronger than that radiated by the distant fixed stars. It showed none of the patterns typical of man-made interference. Drs. A. A. Penzias and R. W. Wilson were frankly puzzled. Strangely enough, similar unexplained noise, of the same order of magnitude, had been suspected by Bell scientists during the Project Echo and Telstar experiments. At that time, though, measurement techniques were not sufficiently perfected to allow them to be certain of their suspicions.

Not far away, however, at Princeton University, an explanation was being devised without knowledge of the Bell experiments. A group under Prof. R. H. Dicke was seeking information about the relationship between gravity and the recession of distant galaxies from us and from each other. The original composition of our galaxy (inferred from spectral lines of "old" stars) and the belief—held by many astronomers—that all matter was once compressed into a vastly smaller volume than at present suggested to the group that the universe was at that time much hotter—a veritable fireball. Such a fireball would emit a characteristic "black-body" radiation which—after cooling through billions of years of expansion—would have fallen in frequency from about 10^20 cps. to about 10^10 cps. It would thus lie in the radio spectrum, at wavelengths of a few centimeters. This was very much like the noise which was puzzling the men at Bell Laboratories.

A mutual acquaintance saw a possible connection and put Bell in touch with Princeton. Result: the signal received at Bell Laboratories has enabled Prof. P. J. Peebles of Princeton to draw the hypothetical radiation spectrum shown in the figure. Future measurements at other wavelengths within this spectrum are planned at both Bell and Princeton to determine whether there was a primordial fireball. If so, it will be the first reliable view man has had of events 10 billion years ago.
Please don't steal our Spectroquality® process

... we'll give it to you! We hear rumors that competitors would like to make solvents that approach the standard set by MC&B Spectroquality solvents. We wish to advise all concerned that there is nothing at all esoteric about the manufacturing procedure we use. Spectroquality solvents are the best solvents for spectrophotometry and fluorometry simply because our Lab Director and his crew have devoted a tremendous amount of time and effort to making them superior. They use a combination of chemical, extraction and distillation techniques in production, and maintain quality thru the use of the most modern, sophisticated instrumentation. If there is a "Spectroquality Secret" it is the determination of our Norwood laboratories to produce the very best line of solvents for spectrophotometry.

There are presently 46 solvents in the Spectroquality line. All are promptly available from MC&B distributors.

Write for new booklet "Spectroquality Solvents—Spectra, Physical Properties, Specifications, Uses."

Division of Matheson Co. Inc., Norwood, Ohio, E. Rutherford, N. J., Los Angeles
only nine lines. Much of the literature published today is obscure and ungrammatical, and these faults will only be corrected when the rules of grammar are applied and clarity of expression is set high on the list of standards by which a manuscript is judged.

Forscher omits to mention that the referee has a responsibility to the author, who is entitled in this highly competitive age to prompt consideration of his manuscript. If a referee is too busy or too lazy to fulfill his obligations within a reasonable time, he should not be entrusted with the responsibility.

If it is the editor's responsibility to make the final decision about publication, it should also be his responsibility to weigh the advice of his referees. He need transmit to the author only those comments that he deems necessary for the improvement of the manuscript or for justifying its rejection; this he can do without disclosing the referees' names.

PETER H. WRIGHT
Indiana University Medical Center,
1100 West Michigan Street, Indianapolis

Forscher's suggestion that verbatim comments from the referee be accompanied by his name appears to offer one way to curb the tendency of some referees to make unsupported judgments such as "naive," "superficial," or, in an extreme case, "stupid."

Moreover, communication of the author with the referee could in some instances prove to be mutually beneficial.

BARBARA J. POWELL
759 Day Street, Galesburg, Illinois

Competence in the Universities

With regard to the Reuss subcommittee's inquiry into the relation between federal support for basic research and the quality of university science teaching (News and Comment, 22 Oct., p. 464), I offer the following observation: Having completed some 20-odd undergraduate and graduate courses in botany and genetics at four institutions (Washington University, the University of Michigan, Claremont Graduate School, and the University of California at Berkeley) during the pre- and post-Sputnik era, I have encountered teaching ranging from excellent to very poor. In every case the good-to-excellent teachers were those who were actively engaged in significant basic research, whereas the poor teachers were also inefficient as researchers. Thus my experience does not bear out the assumption that teaching and basic research are antagonistic duties of the university scientist. One might better regard poor teaching as simply one more aspect of professional incompetence.

KAREN A. GRANT
135 East Seventh Street,
Claremont, California

Antiunion

In the issue of 15 October (p. 292) there is a letter headed "No antineoplastic effects." Now, what can un-lun'g-g-plas'tuk mean? I get it! It means anti-neoplastic.

Why is the hyphen so avoided? The dashed little dash makes for clarity. How can one pronounce and divine the meaning of picornaviruses without hyphens? It's easy when you write it right: pico-RNA-viruses. That does for many another inelegant formulation born out of the modern, hasty need for neologisms and nonce words.

There ought to be a law: Dash it! As for acronyms: To hell with them.

MORRIS LEIDER
New York University Medical Center,
562 First Avenue, New York 10016

Erratum

The 22 October issue presents the wildly improbable coincidence of containing both a letter about parapsychology and "spontaneous cases" (p. 436) and a "spontaneous case." For on page 463, as part of my comments on the 1965 Nobel Laureates in Medicine or Physiology, there appears the phrase "The operator 'loses' . . . ," though what I had actually written was "The operator 'loses'" Now since I happen to have some doubts about the validity of the operator concept, doubts that I certainly would not consciously have wished to introduce on this happy occasion [though I did voice them earlier in Science 144, 816 (1964)], this strange error can be explained only as a Freudian slip by a member of the editorial staff of Science acting under the telekinetic influence of an author's psyche.

GUNTHER S. STENT
Department of Molecular Biology,
University of California, Berkeley
TRI-CARB® Liquid Scintillation Spectrometers
available now... in three different price ranges

2000 SERIES
New, Low Price Systems, starting about $5,000
- Room Temperature
- One and Two Channel Spectrometers
- Semi-Automatic and Automatic
- 100 Sample Capacity

3000 SERIES
Most Widely Used Systems in the World Today
- Controlled Temperature
- Three Channel Spectrometers
- 200 Sample Capacity
- Automatic External Standardization
- Typewritten Data Sheets

4000 SERIES
Finest Large Capacity or Multiple-User Systems
- 15 Color-Coded Sample Trays
- 360 Sample Capacity
- True Electronic Computation

All Three Series of Tri-Carb Spectrometers Are Now In Volume Production and Available for Prompt Delivery. Ask your Packard Sales Engineer for complete details or write to Packard Instrument Company, Inc., 2200 Warrenville Road, Downers Grove, Illinois 60515.

Packard
2000-3000-4000 SERIES
TRI-CARB SPECTROMETERS
Meet All Liquid Scintillation Counting Requirements
ethane as his counting gas in order to introduce twice the amount of carbon into a liter-atmosphere of sample gas; counting 24 liter-atmospheres of ethane for 6 days allows him to measure, without isotopic enrichment, samples 60,000 years old. Unfortunately a very small amount of sample contamination is very significant in this range and may make statistical calculations of range purely academic. Badly needed for evaluating contamination is a series of samples extending from around 20,000 years, where C14 ages should be reliable, back to 75,000 years or beyond.

Finally, Oeschger (Bern) described a very small gas counter having a volume of 40 cm3, designed to analyze CO$_2$ extracted from glacial ice. Even with so small a detector almost one ton of ice must be melted to yield sufficient CO$_2$ for radiocarbon measurement.

In the field of natural tritium measurement, it is often necessary to enrich the H3 prior to counting in order to attain adequate sensitivity. Customarily this has been done by water electrolysis, one installation of which was described by Cameron and Payne (International Atomic Energy Agency, Vienna). Enrichment using thermal diffusion has lately been considered; the conference heard reports on this technique from Sellschop (South Africa) and von Buttlar and Wiik (Darmstadt). Enrichment by use of a gas chromatographic column was described by Smith and Akhtar (Tennessee) but is not as yet applicable to natural levels.

Isotopic enrichment is often unnecessary where bomb-produced tritium is sufficiently abundant. In this case proportional counting has been used without enrichment. Von Buttlar, Wohlfahrt, and Farzine (Darmstadt) generate hydrogen from natural waters and use it to hydrogenate inactive ethylene to ethane, which they count. Lal (Bombay) described a process to produce tritiated methane from water in one stage. His reactor is loaded with sample water, zinc metal, and inactive CO$_2$ gas; the net reaction is CO$_2$ + 2H$_2$O + 42Zn \rightarrow 4ZnO + CH$_4$. This same reaction can be used for C14 measurements, in which case the CO$_2$ is sample-derived and the water is inactive.

The conferees considered the question of the best half-life to use in reporting C14 ages to the journal Ra-

diocarbon. A similar discussion was held during the 1962 Cambridge Conference as a result of three new measurements of half-life (I) that showed the accepted value of 5568 years to be low by 3 percent. Majority opinion in both the Cambridge (2) and Pullman (3) conferences was for retaining the old value for the sake of uniformity in publication while at the same time suggesting a correction factor of 1.03 to be applied for greater accuracy.

One of the highlights for many was the all-day field trip which provided a change of pace in the middle of the conference week. The itinerary included the Palouse hills of Pleistocene loess deposits, the channeled scablands where Pleistocene flood waters have exposed and scoured Tertiary basalt flows of the Columbia Plateau, and the Marmes Rock Shelter at the confluence of the Palouse and Snake Rivers. The latter has been excavated by Washington State University archeologists who have exhumed several human skeletons antedating the Mazama ash fall of 6500 years ago. Guides for the field trip were Richard Daugherty, in archeology, Roald Fryxell in geology, and James Crosby in geohydrology.

EDWIN A. OLSON
Whitworth College, Spokane, Washington

R. M. CHATTERS
Washington State University, Pullman

References

Forthcoming Events

December

20–21. Molecular Transport and Rate Phenomena, 32nd annual chemical engineering symp., Stanford Univ., Stanford, Calif. (A. Acivos, Dept. of Chemical Engineering, Stanford Univ., Stanford, Calif.)
20–21. Nuclear Medicine, 2nd natl. cong., Tel Aviv, Israel. (P. Czernia) Israel Atomic Commission, Soreq Nuclear Research Center, Doar Yavne
It's Beckman Bulletin 7049.

It contains the latest information on pH instrumentation, electrodes, and accessories. It offers comparison data to help you make the right equipment selections. It introduces you to the new concept of Beckman pH — total pH capability.

There are 60 pages to acquaint you with every facet of pH—pH meters, blood pH systems, accessories, electrodes, supplies, titrators—and the in-depth service which accompanies every Beckman product.

Add Bulletin 7049 to your reference shelf. You'll have a comprehensive source from which to order pH equipment as your particular needs arise. There's a free copy for you. Contact your Beckman Sales Engineer, or write for Data File LpH-165. You'll also receive the Beckman Catalog of pH Electrodes.

Get the last word in pH now...it's from the first and foremost manufacturer of pH equipment!
Anatol Rapoport
Albert M. Chammah

Prisoner's Dilemma

This book explores the nature of conflict in the deceptively simple game from which the book takes its title. If two players cooperate, they both win; if they don't, they both lose. But they can cooperate only if each trusts the other, and the game is so structured that there is no rational basis for trusting. Moving beyond game theory, Prisoner's Dilemma builds a bridge between scientific psychology (based on hard data and reproducible experiments) and the psychology of complex inner motivations which create conflict and human strife.

272 pages $7.50

The University of Michigan Press
Ann Arbor

In addition to the 20 sections of the Association and five AAAS committees, the following organizations have arranged sessions at the AAAS annual meeting 26-31 December at Berkeley:

Mathematics
- American Mathematical Soc. (R. S. Pierce, Univ. of Washington, Seattle)
- Association for Computing Machinery. (H. D. Huskey, Univ. of California, Berkeley)
- National Council of Teachers of Mathematics. (J. D. Gates, 1201 16 St., NW, Washington, D.C.)
- Society for Industrial and Applied Mathematics. (J. H. Griesmer, IBM, Yorktown Heights, N.Y.)

Physics
- American Astronautical Soc. (P. B. Richards, General Precision, Little Falls, N.J.)

Chemistry
- American Chemical Soc., California Section. (R. L. LeTourneau, Chevron Research Co., Richmond, Calif.)

Astronomy
- American Astronomical Soc. (G. C. McVittie, Univ. of Illinois, Urbana)

Geology and Geography
- Association of American Geographers. (M. Mikesell, Univ. of Chicago, Chicago, III.)

Zoological Sciences
- American Fisheries Soc. (H. K. Chadwick, California Dept. of Fish and Game, Sacramento)
- American Soc. of Zoologists. (A. G. Richards, Univ. of Minnesota, St. Paul)
- Animal Behavior Soc. (E. M. Banks, Univ. of Illinois, Urbana)
- Herpetologists' League. (F. B. Turner, Univ. of California, Los Angeles)

Zoological and Botanical Sciences
- American Soc. of Naturalists. (C. H. Hubbs, Scripps Inst. of Oceanography, La Jolla, Calif.)
- Ecological Soc. of America. (G. M. Woodwell, Brookhaven Natl. Laboratory, Upton, L.I., N.Y.)
- Western Soc. of Naturalists. (J. M. Craig, San Jose State College, San Jose, Calif.)

Psychology
- Western Psychological Assoc. (G. A. Mendelsohn, Univ. of California, Berkeley)

YOUR RESEARCH DESERVES THE BEST REAGENTS

NEW REDUCED PRICES on

- 6-Bromo-2-naphthyl-
- alpha-D-glucoside
- DPN DPNH
- 8-Hydroxyquinoline
- glucuronide
- TPN TPHN

Write for SPECIAL PRICE LIST to Department S-105.

Dajac LABORATORIES

The Borden Chemical Company
6900 Langdon Street Box 9522
Philadelphia 24, Pa.
Social and Economic Sciences
American Economic Assoc. (R. R. Nelson, RAND Corp., Santa Monica, Calif.)
American Political Science Assoc. (J. F. Triska, Stanford Univ., Stanford, Calif.)
American Soc. of Criminology. (C. Newman, Univ. of Louisville, Louisville, Ky.)
American Sociological Assoc. (W. Form, Michigan State Univ., East Lansing)
Metric Assoc. (R. Fischelis, Ohio Northern Univ., Ada)
Population Assoc. of America. (E. S. Lee, Univ. of Pennsylvania, Philadelphia)
Society for the Scientific Study of Religion. (C. Y. Glock, Univ. of California, Berkeley)

History and Philosophy of Science
Philosophy of Science Assoc. (C. W. Churchman, Univ. of California, Berkeley)
Society for General Systems Research. (H. Thal-Larsen, Univ. of California, Berkeley)
Science Courses for Baccalaureate Education Project. (V. L. Parsegian, Rensselaer Polytechnic Inst., Troy, N.Y.)

Medical Sciences
Alpha Epsilon Delta. (M. L. Moore, 7 Brookside Circle, Bronxville, N.Y.)
American Assoc. of Biomedicalals, Western Region. (M. Menesini, 1287 Rudgear Rd., Walnut Creek, Calif.)
American Physiological Soc. (R. M. Iverson, Univ. of Miami, Coral Gables, Fla.)
American Soc. for Microbiology, Northern California-Hawaiian Branch. (K. J. Taylor, Cutter Laboratories, Berkeley, Calif.)
California Veterinary Medical Assoc. (A. G. Edward, Univ. of California, Davis)
Society for Experimental Biology and Medicine, Pacific Coast Section. (E. L. Dobson, Donner Laboratories, Univ. of California, Berkeley)

Education
Commission on Science Education. (J. R. Mayor, AAAS, 1515 Massachusetts Ave., NW, Washington, D.C. 20005)
American Nature Study Soc. (H. E. Weaver, Univ. of Illinois, Urbana)
National Assoc. of Biology Teachers. (H. K. Wong, Menlo-Atherton High School, Atherton, Calif.)
National Science Teachers Assoc. (A. F. Eiss, 1201 16 St., NW, Washington, D.C.)

Information and Communication
National Assoc. of Science Writers. (L. S. Zahn, Hill and Knowlton Inc., 150 E. 42 St., New York, N.Y.)

Statistics
BIO: Biomedical Information-Processing Organization. (M. Woodbury, New York Univ. Medical Center, New York, N.Y.)

we’d like to clear something up...

That’s Noise! Your electronic signal may contain the information you want, but unrelated noise may be obscuring it. Regardless of the frequency range of the noise and signal, Enhancetron will clarify the picture.

That’s Enhancetron! See how your signal comes through loud and clear. That’s because Enhancetron 1024 Portable Signal Averaging Digital Computer adds everything up, noise included. Repetitive signals add in direct proportion to the number of samples taken; noise adds in proportion to the square root. The signal literally “grows” out of the noise.

This new measurement tool brings greater speed, accuracy, and efficiency to noise reduction in every branch of science—yet it costs much less than earlier models of lower resolving power.

ENHANCETRON® Portable Signal Averaging Digital Computer, with 1024-word magnetic core memory. Let us clear up questions you have. Write us for ENHANCETRON literature.

Please send me more information on ND 800—Enhancetron 1024
Name_____________________________________
Company__________________________________
Address__________________________________
City____________________State____Zip________

ND NUCLEAR DATA INC
120 WEST GOLF ROAD, PALATINE, ILL. 60067

1495
FOUNDATIONS OF MODERN ORGANIC CHEMISTRY SERIES

Edited by Kenneth L. Rinehart, Jr., University of Illinois

"The series approach to undergraduate organic chemistry offers the considerable advantages of an authoritative treatment by teachers active in research, of frequent revision of the most active areas, of a treatment in depth of the most fundamental material, and of nearly complete flexibility in choice of topics to be covered. Individually, the volumes provide introduction in depth to the basic areas of organic chemistry; together they comprise a contemporary survey of organic chemistry at an undergraduate level."—from the Editor's Preface.

1965 PUBLICATIONS

APPLICATIONS OF ABSORPTION SPECTROSCOPY OF ORGANIC COMPOUNDS

John R. Dyer, Georgia Institute of Technology. This new book is devoted to the practical aspects of the interpretation of the three most common types of spectral data with which the organic chemist now deals—ultraviolet, infrared, and nuclear magnetic resonance spectroscopy. 143 pp., paper $2.50, cloth $5.50

IONIC ALIPHATIC REACTIONS

William H. Saunders, Jr., University of Rochester. Studies of the several types of reactions in organic chemistry are encompassed by this book—ionic addition, substitution, and elimination reactions of aliphatic compounds; the characteristics of each are examined. Mechanistic considerations are a dominant theme. 113 pp., paper $1.95, cloth $4.50

STRUCTURES OF ORGANIC MOLECULES

Norman L. Allinger and Janet Allinger, both of Wayne State University. The first book at this level that divorces the structures of organic molecules from chemical reactions, this text discusses structure from the modern physical viewpoint. A brief review of atomic structure is included. 128 pp., paper $2.50, cloth $4.95

FORTHCOMING IN THE SERIES

FUNCTIONAL GROUPS IN ORGANIC COMPOUNDS, Orville L. Chapman and Walter Trahanovsky

INVESTIGATION OF ORGANIC REACTIONS, Ross Stewart

CHEMISTRY OF CARBONYL COMPOUNDS, G. David Gutsche

INTRODUCTION TO FREE RADICAL CHEMISTRY, William A. Pryor

AROMATIC SUBSTITUTION REACTIONS, Leon M. Stock

ORGANIC SYNTHESIS, Robert E. Ireland

COMPOUNDS OF NATURE, Richard K. Hill

OXIDATION AND REDUCTION OF ORGANIC COMPOUNDS

Kenneth L. Rinehart, Jr.

MOLECULAR REACTIONS AND PHOTOCHEMISTRY, Charles H. DePuy

RESEARCH IN ORGANIC CHEMISTRY, Robert B. Bates and John P. Schaef er

HETEROCYCLIC COMPOUNDS, Edward C. Taylor

ORGANIC CHEMISTRY OF BIOLOGICAL COMPOUNDS, Robert Barker

INDUSTRIAL ORGANIC CHEMISTRY, John K. Stille

X-RAY CRYSTALLOGRAPHY AND MASS SPECTROMETRY OF ORGANIC COMPOUNDS, Kenneth L. Rinehart and George A. Sim

For approval copies, write: Box 903

PRENTICE-HALL

Englewood Cliffs, N.J.
Where the finest separation, analysis and purity evaluation of protein systems is being carried out...

DISC ELECTROPHORESIS

is in the act.

Copyright 1965 Canal Industrial Corp.
Are you a “nucleic acid genealogist” too?

That is, do you study the genealogy of nucleic acid and its relatives? Or anything else about them?
We do a lot of this. So much so that we now have the world’s largest selection of nucleic acids and their precursors. These are available to you. Promptly. Most are labeled with C¹⁴, H³ or P³².
We are particularly proud of our new C¹⁴-labeled deoxyribonucleoside triphosphates. These nicely complement our extensive line of nucleic acids, nucleotides, nucleosides, purines and pyrimidines. Also RNA metallic nucleates. We’ve got a useful 5’ nucleotides properties chart that you’re welcome to too. And/or ask for our complete catalog.

Incidentally, every time you get something from us, it’s accompanied by a Product Analysis Report. This gives you all the quality control data pertaining specifically to the material you receive. You even get (when appropriate) a radiochromatogram with 0.5% sensitivity. This precise evidence of quality enables you to use all your time doing research. You can leave the quality control to us.

And if you’re in a real hurry for one of our products, or wish additional information, feel free to call us collect at 914-359-2700. Ask for Maryann.

Schwarz BioResearch, Inc.
Orangeburg, New York 10962