NEW!
Introduction to Topological Groups

By TAQDIR HUSAIN, McMaster University, Hamilton, Ontario, Canada.

Here is a new text well suited for graduate courses devoted to understanding the significant terms and theorems of topological groups. It is based on notes used by the author in a course he taught at the University of Ottawa. Unlike other books on the subject, this text begins with a study of semitopological groups rather than topological groups. Dr. Husain finds semitopological groups less restricted than topological groups and, therefore, the most logical subject for the beginning of the book. The first five chapters deal with algebraic-topological aspects, while the remaining four chapters emphasize the analytical features. This arrangement gives the instructor the advantage of being able to select material for his course according to his own feelings on necessary emphasis.

Chapter V—Open Homomorphisms and Closed Graphs—introduces the concept of B(%) group for the first time in any text. An index of symbols is in the text, in addition to the standard index. The book is self-contained and can be used for independent study by those with background in advanced mathematics.

218 pp. * About $7.00 * New! Just Ready.

NEW!
Foundations of The Calculus

By HENRY F. DEBAGGIS, Fordham University and KENNETH S. MILLER, Columbia University Electronics Research Laboratories.

A brief yet rigorous treatment of the calculus, this text is ideal for use in a freshman-sophomore level terminal course, in a course for prospective high school teachers, or for an in-service course for high school teachers. The emphasis is directed towards achieving an early understanding of the concepts of calculus and is not concerned with the development of mere manipulative skills.

The authors’ years of teaching experience have convinced them that field axioms provide the most logical starting point for a text. The student’s previous mathematical experience is unified within a postulational framework in the first three chapters of the text. The complete ordered field is then introduced by means of the least upper bound axiom in these early chapters. Analytic geometry is developed via the complete ordered field axioms in conjunction with the axioms of synthetic geometry. Emphasis throughout the text of the book is on the function concept.

By careful selection of chapters, instructors may alter this book to suit the needs of their own courses. A wealth of exercises are included.

About 225 pages * Illustrated * About $5.25 * New! Ready May.

NEW!
Linear and Convex Programming

By S. I. ZUKHOVITSKIY and L. I. AVDEYEVA, both Kiev Institute.

Here is an outstanding text and reference for those interested in advanced programming. The translation from the original Russian is by Scripta-Technica, Inc., and Dr. Bernard Gelbaum of the University of California edited the translation.

The authors use a geometric approach in their book, to give a thorough understanding of the geometry involved in the problems and methods. Jordan Eliminations form the basis of the computational methods.

Application of the basic simplex method to linear programming is presented in the first four chapters of the book, followed by a chapter devoted to Chebyshev Approximation. The sixth and final chapter carefully treats the subject of convex programming.

An extensive international bibliography gives a wealth of sources for further study. Concepts presented are illustrated by a substantial number of clear, concise examples in each chapter.

Topics presented include the Method of Potentials, Quadratic Programming, Integral Programming, and Military Problems.

About 350 pages * Illustrated * About $10.00 * New! Ready August.

Please send and bill me:

- [] Husain—TOPOLOGICAL GROUPS ... about $7.00
- [] DeBaggis & Miller—CALCULUS ... about $5.25
- [] Zukhovitskiy & Avdeyeva—PROGRAMMING about $10.00

Name ... (Affiliation)

Address

W. B. SAUNDERS COMPANY W. WASHINGTON SQ., PHILADELPHIA 19105

8 APRIL 1966
Introducing the LKB ReCyChrom for

RECYCLING CHROMATOGRAPHY

NEW INSTRUMENTATION FOR A NEW TECHNIQUE* IN CHROMATOGRAPHIC SEPARATION

The ReCyChrom is equally applicable for preparative and analytical separation of mixtures of large-sized or of small-sized molecules. These molecules do not have to be electrolytes and restrictions on the type of buffer used are less than with other types of chromatography. Components within a narrow range of molecular sizes, usually not resolved on simple gel filtration columns, are separated in the ReCyChrom by allowing the sample to pass repeatedly through the bed, thereby multiplying its effective height many times. Separated fractions and uninteresting or disturbing parts of the effluent may be bled out of the stream after any cycle without interrupting the separation of the remaining components.

The apparatus is especially suitable for grading homologous series of polymers, e.g., dextrans; for routine control of the purity of biochemical preparations such as serum proteins, enzymes and hormones; and for separation of heat labile substances.

One unique advantage of recycling chromatography is the need for columns of only moderate length. Columns in two standard lengths, 60 cm and 100 cm, both with 32 mm bore are available at present. The range of sample volumes accommodated by these columns depends greatly on the nature of the sample. For simple desalting operations or for separation of peptides and amino acids from proteins, a sample of up to 150 ml is not unusual, whereas for purity controls of radioactively tagged concentrated preparations, quantities down to 1/100 of this volume are feasible. Sample application by pipette is eliminated. The pump sucks sample through a selector valve with a holdup of 150 µl—a reproducible and non-critical method.

The four main components of the ReCyChrom, namely, a separation column, a peristaltic pump, a selector valve and a flow analyzer are available separately for incorporation into other instrument setups. The specially constructed columns with adjustable plungers at both ends can be sealed completely to eliminate the pressure of water head and permit liquid flow in either direction. Closed system operation and ascending flow maintains even packing and prevents the flow rate from falling off with use, even when beds of material with low mechanical strength (gels) are used.

LKB's specially designed peristaltic pump has a very high flow constancy—0.5% over a period of a week—and a continuously variable pumping rate from 0-390 ml/hr.

A choice of three flow analyzers, cooling jackets, terminal box, connections and a cart comprise the remainder of the assembly.

Request literature file 4900S4 for details

*According to J. Porath and H. Bennich

The simple push of a button on the Selector Valve alters the flow circuit from injection or bleeding to recycling.

The Peristaltic Pump has many other uses when not in service for the ReCyChrom.

LKB INSTRUMENTS, INC., 12221 Parklawn Drive, Rockville, Maryland 20852
LKB-PRODUKTER AB, P.O. Box 76, Stockholm-Bromma 1, Sweden
approaching the ultimate in versatility

The new Nikon M can be relied upon to deal with the most exacting demands arising in industrial, biological and medical research. Its capabilities are almost limitless, embracing every aspect of reflected- and transmitted-light microscopy, bright-field, dark-field, phase-contrast, interference-phase, fluorescence, and photomicrographic techniques.

Of significant interest to the researcher is the unique suitability of the Nikon M for time-lapse cinemicrography in tissue-culture studies. Of equal significance are its facilities for using petri dishes and incubators, for projecting superimposed data onto the field of view, and for meeting consultation requirements by permitting two people to observe the same field simultaneously.

All of this is still further implemented by a wide variety of interchangeable accessories and attachments. But perhaps even more important is the quality of performance the Nikon M brings to these applications — the ruggedness and stability of its design, the precise responsiveness of its controls, and the noticeable superiority of its optics. Inquiries regarding special applications are invited; Demonstrations arranged. For complete details, write to NIKON Instrument Division, 623 Stewart Ave., Garden City, N.Y., 11533 Subsidiary of Ehrenreich Photo-Optical Industries, Inc. In Canada: Anglophoto Ltd., Instrument Div., Rexdale, Ont.
The PAR WAVEFORM EDUCTOR extracts repetitive waveforms or transients from noise. Experimental information in the form of repetitive waveforms can best be extracted from noisy signal channels by obtaining the cross-correlation function of the waveform-plus-noise with a train of delta-functions having the same repetition rate. The cross-correlation function will be the waveform of interest, noise having averaged to zero. Approximations of this operation may be performed digitally, but generally there are drawbacks in time efficiency, speed, and expense. The PAR TDH-9 WAVEFORM EDUCTOR is an analog averaging instrument having one hundred channels of capacitor memory. The cross-correlation approximation is obtained by dividing that part of the input waveform of interest into one hundred segments. These are switched sequentially and synchronously through a resistor to the memory capacitors where the average is obtained and stored. The information in the memory bank is continuously observable on a monitor scope and the average can finally be photographed or read out on an X-Y or strip-chart recorder. The TDH-9 has the advantages of speed, efficiency, and low price.

SPECIFICATIONS

- **Resolution:** 100 channels. Output smoothing provides continuous output waveform rather than “stairstep.”
- **Sweep Duration:** Continuously adjustable from 100 μS to 11 Sec in five ranges. (Dwell time/channel: 1 μS to 110 ms.)
- **Characteristics Time Constants:** 5 Sec to 100 Sec in 1-2-5 sequence. The characteristic time constant is that time constant with which the output waveform responds to changes in the input waveform. Because the stored waveform is held during the time between sweeps, the observed time constant can be larger than the setting of the Characteristic Time Constant Switch.
- **Sweep Delay:** A delay of 10 μS to 11 Sec can be inserted between receipt of trigger pulse and initiation of sweep.
- **Output:** Full scale is ±10 volts, capable of driving oscilloscopes, X-Y recorders, and strip chart recorders. Readout can be as slow as 100 Sec (dwell time/channel 1 Sec).
- **Dynamic Range:** Noise and interference five times the full-scale input will not cause overload. Output noise with shorted input for most combinations of Sweep Duration and Characteristic Time Constant is below 0.2% of full scale.
- **Power:** 105-125 or 210-250 volts AC, 50-60 Hz; 25 watts.
- **Price:** $4200.00 Request Bulletin 126.
Conservation of What?

I heartily agree with P. T. Flawn ("Geology and the new conservation movement," 28 Jan., p. 409) that the absence of geologists from today's conservation groups is unfortunate. It is also unfortunate that the training of geologists, foresters, wildlife biologists, and others who can contribute to conservation is usually deficient in the humanities and the social sciences... The conservation movement is severely handicapped by a shortage of men of broad vision... Flawn criticizes "preservationists" as being unrealistically "opposed to change." But preservation of noneconomic values has its place along with sensible exploitation of natural resources. It is shortsighted to say, as Flawn does, "The preservation of an old building simply as an architectural and historical monument in the midst of a growing city where there is great demand for space can hardly be justified unless the building can be converted to serve a useful purpose as well as being a monument. This is multiple use." In this sweeping statement, the University of Texas professor says, in effect, that the Alamo in San Antonio is useless, that it should either be destroyed or converted into—example—a shopping center. Can a dollar value be placed on the Alamo? It is a priceless shrine to patriots who died for the sake of Texas liberty. Texans unborn deserve the opportunity to visit the Alamo. As a citizen of Illinois, I would gladly pay taxes to preserve the Alamo. Illinois has some old buildings, too. How much is the Lincoln home in Springfield worth? The house is near the state capitol, and the site would be desirable for an office or an apartment building. Would its destruction be progress? Would the destruction of the Acropolis in Athens and the construction of a hotel on its site be progress? How about Mount Vernon as the site of a sewage treatment plant, and Independence Hall as an office building? Wouldn't historians and architects be better qualified than geologists or economists to judge the importance of such buildings and sites?

Flawn continues, "Likewise, preservation of a potential rock-quarry site as a woodland glade constitutes elimination of a valuable mineral resource and costs society a substantial amount of lost tax revenues and lost payroll." But doesn't the value of the glade depend also on its botanical and ecological significance? Who is better qualified to judge the importance of a particular woodland glade, petroleum geologists or a team of plant ecologists, plant taxonomists, landscape architects, and park planners? Gravel pits are needed, but so are woodland glades, especially near centers of population. Certainly the redwoods of California could be eliminated to someone's profit. Grand Canyon can be converted to Grand Lake and enhance the real estate market in Central Arizona... The starving and impoverished, to be sure, can have little interest in esthetics. In conservation, as in other large problems, there are no short cuts to wisdom. We need master planning for resource use on the international as well as a local scale. But man's future does not rest upon economic expediency alone. We need to define and practice what the late Aldo Leopold referred to as the land ethic. Both tangible and intangible values must be considered. Why shouldn't we be willing to pay a price for the preservation of beauty, of flora, fauna, and geological wonders, and of reminders of history, all of which enrich the quality of man's existence?

H. E. WEAVER
Department of Recreation and Municipal Park Administration, University of Illinois, Champaign 61822

... Flawn picks a questionable example to illustrate what he refers to as "the multiple-use concept." Discussing the choice between preservation of a woodland glade and operation of a rock quarry, he writes: "In line with the multiple-use concept, the rock could be quarried over the economic life of the deposit and thereafter the area could be landscaped and restored for other uses." What he proposes is not multiple use; it is one kind of use followed by another kind of use, and
There are at least 16 UV monitors already available (and one of them is even ours).
Whatever possessed us to develop number 17?

Unbounded optimism. That, and the rather firm conviction that it was now time for a first-rate, fully quantitative flow analyzer for monitoring UV absorption at either 254 or 280 mµ.

This new analyzer, the Uvicord II, is now available as a particularly useful tool for continuous measurement of the UV absorption of electrophoretic or chromatographic effluents containing fractions which absorb at 254 or 280 mµ. And it is especially suited for cold room use because: (1) the light source compartment is insulated and has its own built-in heating coil, and (2) the control unit and/or recorder can be physically separated from the detector unit, thanks to a very long cable. (One of several advantages of a separate recorder.)

The primary source of the 254 mµ in the Uvicord II is a stable, long-lived, low-pressure mercury lamp. But then getting the desired 280 mµ was quite another matter and proved to be somewhat of a strain on the aforementioned unbounded optimism. The eventual elegant exclusive solution: the 254 mµ from the mercury lamp is used to excite a transparent rod which has been specially activated to fluoresce strongly. This rod then emits UV in a relatively narrow peak with a maximum at 280 mµ. Unwanted radiation is eliminated by using black glass and selective interference filters. This latter interference filter was also developed by us and provides unique assurance of getting the essentially monochromatic light needed for quantitative measurements.

What is the possibility of harming UV-sensitive materials with the Uvicord II? It's unlikely. The maximum UV dose to which a sample can be exposed is a negligible 10^{-11} Einstein/min, equivalent to 0.09 µW.

Then we should probably also tell you that this instrument has a well-designed detector unit, that the very small measuring cells have good flow properties and are easy to get to, and that the circuitry is simple, straightforward and dependable. All true. Or, that the Uvicord II is compatible with our entire line of chromatographic devices, fraction collectors, and recorders. The Uvicord II takes its place comfortably in our complete systems (whose individual units are all LKB-designed and built), or, alternatively, can perform as a versatile UV analyzer when coupled to other equipment. Incidentally, the Uvicord II follows the Uvicord I but doesn't necessarily displace it. You might keep the Uvicord I in mind if your need is solely for 254 mµ; it's still very viable. (So now there are at least 17 UV monitors, and two of them are ours.) For complete specifications on the Uvicord II, ask for bulletin 8300S4.
in the process the original woodland glade would be destroyed.

The criticism may seem carping and picayunish, but it has a most serious purpose. In this hypothetical case, as in most actual cases, a selection must be made from among conflicting uses. By no stretching of the imagination can the choice of one at the expense of others be made to constitute “multiple” use. The so-called “preservationist” point of view rests pretty strongly on this basic fact. Supporters of the multiple-use idea promise something for everyone; “preservationists” are only too well aware that this is an impossible goal.

Chest B. Beaty
Department of Geography,
University of Montana, Missoula
59801

. . . While on some points Flawn questions the continued serviceability of our private-property system, he seems to me too orthodox in uncritically accepting much of the economic mythology of valuation and growth. For example, the objection to “locking up” space in the face of economic demand by preserving an old building (it is easy to stretch this outlook to local parks, bird sanctuaries, and the like), and the complaint about “lost tax revenues and lost payroll,” should be extended to the speculative holding of land, which keeps much more acreage out of use. And in an age when a single 4- by 6-foot Rembrandt seems worth \$2,300,000 to the trustees of an art museum (all of them hard-headed businessmen), who is to say how much we can or cannot afford for open space?

Flawn says, “Although conservation is frequently defined as effecting a harmony or balance between man and his environment, such a goal can never be achieved in an industrial environment. . . .” I challenge this notion. Our consumption of raw materials, as Flawn recognizes, need not disfigure the landscape. Government can, without assuming “complete authority” in planning, foster better use of the land than our “accidental century” (see Michael Harrington’s 1965 book of the same name) has so far produced. The government’s role is to set limits. The mining of Texas of oyster-shell reefs which Flawn describes is an excellent example of why more far-sighted policy by industry, the states, and the federal government is needed. The uses to which the shell is now being put—chemicals, aggregate, and road base—are all lower uses; the highest use, now being disregarded, is biological productivity. These shallow Gulf Coast bays are indispensable as producers of shrimp, finfish, and shellfish; great colonies of colorful birds depend on them; and these resources, whether labeled business, sport, tourism, or pleasure, are worth more to society in the long run than whatever return the liquidation of the shell banks is bringing to a few politicians and a small segment of the industry. If the dredges are allowed to finish excavating, these bays will become sterile sinks, because deep water is relatively unproductive. The tragedy of shortsightedness is that we could have both kinds of products from the bays; not, however, if the cost of mammoth dredges has to be amortized within a few months!

Roland C. Clement
National Audubon Society,
1130 Fifth Avenue, New York 10028

. . . A major obstacle to conservation is the lack of understanding by the general public and by political leaders of the nature of economic growth. It is generally assumed that economic growth is always good and that a decreasing rate of growth is bad. . . . Progress is measured largely by the rate at which physical goods increase. This assumption may have been valid in the past for the major industrial nations, and may still be valid for the underdeveloped nations. But it needs more careful scrutiny in the light of what we know about the nature of the growth process. . . . If we blindly insist upon maintaining a constant rate of economic growth and use of natural resources on the present basis, we practically guarantee an “explosive” situation. Not only does a constant rate of growth of production entail consumption of raw materials and energy at an explosive rate, but along with that go production of pollutants and other adverse alterations of the environment at explosive rates. The situation is even worse if population also grows explosively—that is, at a constant rate.

Thus, in a broad sense conservation implies reexamination of some long-cherished goals and values of our society. Some activities, such as producing and riding in two-ton cars, are enormously wasteful of probably irreplaceable raw materials and energy. Other activities, such as reading books, watching plays, dancing, art, music, en-
tail very small use of matter and energy. Perhaps we should begin to designate a conservation index for various activities—high indices for activities that imply little use of resources, and low indices for those that are wasteful of matter and energy. Increased efficiency of production and use will help, obviously, but we must also begin to encourage participation by consumers in those activities that have a high conservation index. Certain economic activities—production of food, water, and shelter—should, obviously, have high priorities. War and production for war are, of course, the most wasteful of all activities, since they consume raw materials and energy without any basic contribution to human welfare. . . . Some may believe, as a matter of faith, that scientists can solve any problems that arise, so long as they are given enough money. Many scientists are becoming increasingly uncertain that they can fill the bill. The world is finite and its resources are finite.

HY RUCHLIS
160 Parkside Avenue, Brooklyn, New York 11226

. . . I commend Flawn for presenting many important conservation ideas in his addresses before organizations made up of individuals who may have relatively little understanding of the concepts. But he errs in saying that the rape of the Appalachian coal fields, which conservationists criticize today, all took place 50 years ago. Conservationists are rightly protesting the very recent forms of exploitation based on the use of large, modern earth-moving equipment.

I would like to point out a few ways that geologists might actually aid in conservation of man's environment. Our profession can and should point out the lack of judgment often exhibited by state and federal agencies in locating and building dams on sites chosen for political motives. We should advise on proper watershed management as a means of permanent flood control that would eliminate dependence on temporary check-dams and reservoirs. Local, state, and federal planning agencies are badly in need of scientific advice on land use, and geologists can make a major contribution to this. They can counsel against extensive construction on unstable substrates or areas subject to rare but devastating flooding. Existing forest practices, carried out without regard for

Holography, Raman spectroscopy, interferometry, light scattering: some current uses of Raytheon's Argon Ion Laser

These are just a few of the current applications of Raytheon's LG12 1-Watt CW Argon Ion Laser, which produces a minimum of six lines in the blue-green spectrum. Among others: as a light source for the measurement of turbulence effects, and in the development of photo exposing processes. Additional applications—such as optical data processing—are being investigated.

Total output of the LG12 Laser is one watt CW in a diffraction-limited uniphase coherent spherical wavefront in the TEM_{00} mode. The LG12 is available for delivery in just 60 days.

Raytheon's Laser Advanced Development Center offers a wide variety of gas and solid state lasers—in standard and special models—and components.

For complete information on Raytheon lasers, please write or call Raytheon Company, Special Microwave Devices Operation, Laser Advanced Development Center, 130 Second Ave., Waltham, Mass. 02154, Tel. (617) 899-8080.
the long-term effects of soil-cover destruction and concomitant flooding, are seriously in need of revision in the state of California and other areas; geological opinions and facts are needed to help formulate effective legislation. In short, the geologist should have the ability to see the temporal position of mankind and his fellow organisms in the total environment of the surface of this planet, and he, above all, should advise his fellow men of their role in this evolving, dynamic interplay.

I am pleased to learn that the theme of the AAAS meeting in Washington this year will be conservation. Before that meeting, let us at least try to agree on a definition of that term.

ROBERT R. CURRY
Department of Geology and Geophysics, University of California, Berkeley

Flawn has done a service both to geologists and to conservation in pointing out that “geologists are conspicuous by their absence from today's natural-resource planning groups, local, state, and federal . . . [perhaps because] geologists are regarded in government circles as champions of the mineral industry, rather than as conservationists.” The same could be said of mining and petroleum engineers, probably because, as Flawn notes, “There is a disturbing aspect of the new conservation movement in that the extractive industries and the mineral industries in particular are regarded as rapacious despilers and looters of the nation’s resources.” The use of this vituperative vocabulary to disparage the development of resources by American private enterprise for the use of the American people, and thereby to promote government control, has been going on for a long time. The intention to use the conservation movement to bring about what most dictionaries call socialism was clearly stated in Gifford Pinchot's article “Breaking new ground,” published some 40 years after the famous 1908 White House Conference on Conservation (and reprinted as “What it all means” in Readings in Resource Management and Conservation, I. Burton and R. W. Kates, Eds., Univ. of Chicago Press, 1965). Pinchot said: “Conservation is the application of common sense to the common problems for the common good. Since its objective is the ownership, control, development, processing, distribution, and use [emphasis mine] of natural resources for the benefit of the people, it is by its very nature the antithesis of monopoly.” Many sound and sincere conservationists, including geologists and engineers, want no part of the scheme to use the conservation movement to socialize natural resources.

Geologists and engineers have done a spectacularly effective job, without publicity in conservation literature. It is no coincidence that there have been adequate oil and other mineral supplies for the 20th-century wars and for the maintenance of the economy in the meanwhile. It has been due to the operation of the scientific, engineering, executive, and technological talents and skills of the most capable discovery and development personnel in the world — almost all in private industry. Transfer of access to undiscovered mineral resources from this capable body to “resource managers” or government agencies by wholesale segregation of land under the mining and leasing laws could be a national catastrophe.

The Multiple Use Act (Public Law 88-607, 19 Sept. 1964) might be interpreted to do just that. Parts of section 1 provide for the Secretary of the Interior to determine which lands “shall be retained . . . in Federal ownership and managed for . . . mineral production.” Section 4 provides that classification for retention “shall have the effect of segregating such land from . . . disposal under . . . the mining and mineral leasing laws. . . .” The Multiple Use Act is temporary, enacted “pending the implementation of recommendations to be made by the Public Land Law Review Commission.” Flawn’s alert regarding the absence of mineral exploration and development experts from high conservation councils is most timely. The portents of government management are indeed ominous. Geologists, engineers, and everybody else, including the Public Land Law Review Commission, need to be aware of this potential for nullifying the most successful land policy in all history.

WILLIAM W. PORTER II
244 South Gramercy Place,
Los Angeles 4, California

Linear Algebra: Teacher’s Problem

I am a physicist with the usual sort of background in mathematics and am teaching mathematics to high school students. It has been my observation
AAAS Election System

The news (18 Feb., p. 843) that the Council of AAAS defeated a constitutional amendment which would have given all Fellows the privilege of electing officers of the association will surely be greeted by many with surprise and disappointment. It has sometimes been claimed that the association is a democratic organization, but terms must be carefully scrutinized when it is realized that the members of the council, who now retain all elective power in addition to their legislative power, are usually appointed.

It is a remarkable feature of the contemporary scene that in a country whose institutions offer many notable examples of democracy, the one scientific organization which seems to have the potentiality of becoming an authentic representative of American science, by the criterion of popular election by a qualified constituency, chooses to reject that opportunity. If we knew the reasons for this action, we might have significant clues to the contemporary scientist's approach to the problems of power and responsibility.

LAWRENCE CRANBERG

Charlottesville, Virginia

that to many high school and beginning college students, too intelligent to be ignored, "pure mathematics is to applied mathematics as crossword puzzles are to literature." These potential users of mathematics need to see mathematics work, in order to appreciate it and be excited by it.

In group theory and in linear algebra, which are now beginning to come into high school math, particularly in the teaching of matrices, I have been able to find very few significant applications which do not require extensive training in other disciplines in order to be understood. One tells the student that matrices, for example, are indispensable in many fields in order to avoid a quagmire of symbols. Can this be demonstrated in applications that are reasonably easy to understand?

I should be grateful for suggestions in whatever field of application, showing the significance and use of change of basis, matrices, linear transformations, and group theory. Details, please.

R. K. JARVIS

Groton School,
Groton, Massachusetts

SPECIFY DU PONT REAGENTS FROM:
Why buy a new Esterline Angus Servo Recorder instead of brand A, B, C or D?

for 12 good reasons*

<table>
<thead>
<tr>
<th>X's indicate standard features at no extra cost</th>
<th>Esterline Angus</th>
<th>Brands (names available on request)</th>
</tr>
</thead>
<tbody>
<tr>
<td>List price, $975 or lower</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Solid state amplifier</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>50,000 ohm off balance input impedance or better</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Response as fast as 1/2 second even at a 1 MV range</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Accuracy (\pm \frac{3}{4})% span or (\pm 3\frac{1}{2}) microvolts</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dead band 0.1% of span or less</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Stray rejection: longitudinal 60 cycle AC, 1,000 times span or 120 volts</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Permanently sealed slidewire requires no cleaning</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5 chart speeds</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Chart tear off</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tilt writing platen</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pen lifter</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Discover additional reasons for buying Esterline Angus Single and Two-channel Wide Chart (10") Servo Recorders. Write for Series "E" Catalog.

Esterline Angus Instrument Company, Inc.
Box 24000L • Indianapolis, Indiana 46224

Excellence in instrumentation for over 60 years

SCIENCE, VOL. 152
WHY DOESN'T ANYONE ELSE PRODUCE SOLVENTS LIKE SPECTROQUALITY, CHROMATOQUALITY, CRITERIOQUALITY, DEUTERQUALITY AND PESTICIDEQUALITY?

We don't know. Maybe it's too much trouble for the profit potential. Maybe our competitors prefer to excel in other specialties. Whatever the reason, nobody does make solvent lines that are as complete or that match the standards of those named above. Special grade solvents is one field where MC&B is better than anyone else. And, since all MC&B solvents are immediately available from your friendly neighborhood MC&B distributor—who cares why nobody else makes them?

Division of Matheson Co. Inc., Norwood, Ohio, E. Rutherford, N. J., Los Angeles

Spectroquality®, Chromatoquality, etc., are MC&B brand names for special grade solvents designed for use in spectrophotometry, fluorometry, pesticide determination, and as reference standards.