Esterline Angus doesn't keep handing you the same old line!

We keep developing new graphic recorders and new features to incorporate in established recorders...to satisfy your needs.

We've developed a trouble-free servo motor with only one moving part. No pulleys, drive cords or gears. It delivers 2/10 second response over a 10" span and 1/8 second response over a 4 1/2" span.

Our new Multipoint has an exclusive Programmed Printing option. It lets you select points electrically with switches.

You can now order our Permanent-Magnet Moving-Coil recorders with magnetic amplifiers (to increase sensitivity) or with power transducers (to measure watts, volts, amperes, vars...).

We've designed a Rapid Response (1/10 second) Voltmeter. It records 100 millisecond voltage transients with full accuracy...especially valuable in monitoring power supplied to data processing units.

In addition to our best selling Ink Type Event Recorders are new Inkless and High Impedance Event Recorders. The high-impedance instrument can be bridged into low-power (i.e., telephone) circuits without upsetting their operation.

Want to record more than one channel of information on the same chart? We now have six types of two-channel recorders, plus an Analog-Event Recorder which provides one channel of analog information and eight channels of event information.

Oscillo Graphs? Choose from nine units including portables and cabinet models. All with frequency response above 125 cps.

Write for our full line brochure. You'll discover we make more kinds of graphic recorders than just about anybody else.

Esterline Angus Instrument Co., Inc.
Box 24000L • Indianapolis, Ind. 46224

EXCELLENCE IN INSTRUMENTATION FOR OVER 60 YEARS
Read the fine print.

Every time you buy a radioisotopically labeled compound from Isotopes, Inc., it is accompanied by a Control Laboratory Report like the one you see below. Read the fine print:

"This product is fully warranted in regard to its chemical and radiochemical purity and isotopic assay."

Each Report not only certifies radiopurity, it also details the analytical data on which the determination was based. The Report states the compound’s initial level of purity and the date of analysis. The Report specifies both the chemical and radiochemical criteria of purity for the compound and describes the analytical procedures used. Graphic documentation of the radiopurity is part of the Report and information on stability of the compound is included.

The Control Laboratory Report is tangible evidence of our belief that product purity is the most critical requirement to be met in supplying labeled compounds for research. For this reason, we use the most sensitive and precise quality control methods available today.

Let us supply your next labeled compound order. To meet the need of fast delivery, we maintain a large, controlled inventory of compounds in dispensing laboratories on both the East and West Coast. Many commonly used compounds are stocked prepackaged for same-day shipment.

For catalogs on our “Compounds of Radioactive Isotopes” and “Compounds of Stable Isotopes” write to Isotopes, Inc., 120 Woodland Avenue, Westwood, New Jersey, 07675.
ANALOG ELECTRONICS & OPERATIONAL AMPLIFIERS

Surely we are at least thirty years too late to justify the use of electronics — in measuring almost any physical or chemical parameter; in manipulating the measured data; or in computing, simulating, or otherwise predicting the behavior of a physical system. After three decades, however, the outlines of any discipline become blurred — hence this refresher.

One process is at the root of every contribution electronics ever made to its sister sciences: Amplification. There are many ways to characterize this effect, but perhaps the most general is to say that electronic circuits raise the energy level of data — that they are inherently very sensitive — and can be made to respond, with reliability (stability) and fidelity (accuracy) to very small changes in the input parameter. If the input is not already an electrical signal, it must be converted to an equivalent electrical parameter, by a "transducer.

The need for amplification — for high sensitivity — is apparent from first principles. For example, we may restate Heisenberg's Exclusion Principle as follows: "The accuracy of a measurement is a direct function of the observer's ability to make it with a minimum of disturbance to the system observed." If we read "loading", or "burden" for "disturbance", the need for sensitive circuits is apparent. Unfortunately, electronic amplifiers are not ideal. Left to itself, the sensitivity of a simple electronic amplifier circuit will vary so much (in response to both external influences and the instability of its own component parts) as to render it useless for all but the crudest of applications. For this reason, among others, we have had to invent ways of stabilizing amplifier gain. The most convenient, powerful, and successful of these ways is called Feedback.

By modifying the feedback network, so as to include reactances (capacitors or inductors) as well as resistances, you may create circuits that perform important and useful mathematical operations on a signal; for example one can differentiate or integrate it. Differentiation will convert velocity signals into acceleration, or position into velocity; or, with two differentiators, in cascade, position into acceleration. By integrating, one may reverse the process.

There is almost no limit to the ingenious behavioral variations one may create and control, merely by choosing appropriate feedback network configurations. Nowadays, using inexpensive standard "hardware", one may quickly assemble circuits that respond logarithmically, exponentially, or trigonometrically and circuits that multiply and divide too — almost as faithfully as the circuit of Figure 2 adds and subtracts.

Remember — all of this is done with equipments that cost, generally, hundreds of dollars or less, and not the thousands or more one might expect, from their capabilities and potential usefulness.

The kind of amplifier required for performing these operations with accuracy and fidelity is a very special beast, called (naturally) an Operational Amplifier, and we have devoted much of our time and energy over more than 20 years to its development and refinement.

We manufacture several "generations" of this very special device in large volume at surprisingly low cost ... considering the care we take and the resultant state-of-the-art performance and reliability. Several sell for less than $20.00. Each year, we send many tens of thousands of them into service, to do thousands of different jobs, in hundreds of different applications across the entire spectrum of Science and Engineering. Figure 3 shows two of the 107 standard Philbrick Operational Amplifiers.

If you should want to begin serious study of this subject on your own, we suggest that you write for the following items, as a "Starter Set". They are free.

• Applications Manual for Computing Amplifiers (112 pages — normally $3.00 per copy) • Generalized instrumentation for Research and Teaching (104 pages) • Bulletin 6000 Philbrick in Brief

For faster action, please note that we maintain the busiest, best-equipped Applications-Engineering service in the field. For further information write: Philbrick Researches, 000 Allied Drive at Route 128, Dedham, Massachusetts, Phone (617) 329-1600.

24 JUNE 1966

PHILBRICK

1695
acy; and, in any case, they cannot have the specialized backgrounds required in the many technical fields under their jurisdiction. Second, day-to-day management of a modern university requires a vast number of nonacademic administrators who have no special orientation toward the university or its purposes and who could just as well keep the vital "paper gas" flowing in business or government. In many cases they make decisions which impinge strongly on scientific or academic issues. It is symptomatic of this situation that the study "The Administration of Government Supported Research at Universities" (News and Comment, 29 April) was carried out by the Budget Bureau rather than by the universities. Inaction by the universities on this matter would be expected if the government were engaged in trying to reduce support and curtail the freedom of universities to manage federal funds. The reverse is true, and we now have the Budget Bureau suggesting "research agreements" to replace research grants or contracts. The research agreement presumably would fit the nature of most university research more appropriately than the grant or contract does and would enlarge the area of freedom of the research scientist or at least legalize the freedom he already exercises. It may also serve to shift responsibility for allocation of funds from the granting agency to the university administration.

But in order for the proposed system to operate effectively there must be an impedance match between federal and university administrations; at present many scientists have reason to believe that the match is poor indeed. There is widespread doubt that universities are capable of managing research funds wisely or of making the crucial decisions which will influence science in fundamental ways.

Universities would do well to borrow a page from the book of the federal agencies written since World War II. This book teaches that a proper impedance match between the scientific community and government agencies has been achieved when active and leading scientists have a significant role in policy and in budget allocations and when the government administrator has training and background in the field for which he is responsible, knows the scientists in his field and their work, and is encouraged by his agency to seek new ways to advance his science. The parallel in the university would find for each broad and active research field a dean who knows the overall field closely. The dean would work closely with an advisory panel of scientists, including members from other universities, and they would jointly be responsible for allocation of funds for education and research and for decisions affecting the future of the field in other crucial ways. A structure of this sort, combining specialized knowledge and administrative responsibility, is essential if universities are to assume the more important role which is implied in the Budget Bureau study.

ROBERT G. FLEAGLE
Department of Atmospheric Sciences,
University of Washington, Seattle

International Education Dialogue

The recent congressional hearings on the International Education Bill show the growing interest of the U.S. government in funding programs for international studies. All persons concerned with the crisis in education in developing countries welcome our widening interests, but they wonder if our new plans offer a genuine dialogue.

They demand both technical assistance and associated science-teaching programs, but rarely can we give assistance without adding our social ideas as part of the package. Much as the developing countries call for a wide variety of assistance programs to become effective, it is hoped, before they and we are overwhelmed by problems of survival, they need dignity and acceptance as colleagues working for the common good. Other nations see much of our international dialogue polarized into an offensive parochialism as a price for assistance. Our ideas of science education are exported, and much of this is right, but in this process there is little humble search for new ways of seeing others and understanding ourselves.

There are now several centers, in addition to the Division of Science Teaching at UNESCO, for collecting information on science education programs in various countries, but none is based on service as a means to obtain information and create the needed climate of friendly inquiry between different peoples and between physical sciences and the social sciences such as cultural anthropology.

F. BEHN RIGGS, JR.
7 Park Road, Scarsdale, New York

INSTITUTIONS, INC.
INSTRUMENTS AND PROCESS INSTRUMENTS DIVISION
FULLERTON, CALIFORNIA • 92634
INTERNATIONAL SUBSIDIARIES: GENEVA; MUNICH;
GLASGOW, SCOTLAND; TOKYO; PARIS; CAPETOWN; LONDON
EVERY PACKARD RADIOCHROMATOGRAM SCANNER COUNTS PAPER STRIPS AND TLC PLATES

CHANGEOVER TAKES LESS THAN A MINUTE

You don't make compromises to count either medium on this scanner. It was designed to provide unmatched sensitivity and ease of operation with both paper strips and TLC plates, and it's shipped ready to use with either. For TLC work the user may select manual counting of single plates or an attachment for automatic, in-line scanning of four plates. This versatility with chromatography media is just one of the features of a scanner that users have learned is completely reliable under all conditions of use. Other features include choice of windowless or window counting, wide selection of collimator slit widths, pushbutton selection of scanning speeds and ability to handle chromatograms from ½ to 2 inches in width. For complete details contact your Packard Sales Engineer or request Bulletin 1038U from Packard Instrument Company, Inc., 2200 Warrenville Road, Downers Grove, Illinois 60515, or Packard Instrument International S.A., Talstrasse 39, 8001 Zurich, Switzerland.
Hospital Integration: Equality versus Availability

With medicare benefits scheduled to become available 1 July, the government is facing a crisis of conscience-and-politics in administering the provision of the 1964 Civil Rights Act (Title VI) that denies federal funds to a wide range of institutions that practice segregation or discrimination. The specter of shortages in hospital facilities has been haunting Washington quite apart from considerations of Title VI (Science, 18 March 1966). If substantial numbers of Southern hospitals fail to end discrimination and are disqualified from receiving medicare payments, the situation could easily become desperate. Accordingly, the government’s problem is to balance two values that on the Great Society scale are given roughly equal weight—the availability of medical care and the promotion of racial integration.

There is plenty of cause for alarm. In the last few weeks, the Department of Health, Education, and Welfare, which administers Title VI, has been waging a blitzkrieg campaign, and the number of hospitals whose compliance with Title VI has been certified is rising daily. By last week, however, only one of every three hospital beds in Mississippi, Alabama, South Carolina, Virginia, and Georgia, was in an institution that met the government’s civil rights standards; in Louisiana, North Carolina, Arkansas, and Tennessee the ratio was less than 1:2.

Nationwide, the picture is considerably less gloomy. HEW Secretary John Gardner reported last week that 79 percent of the country’s 7548 hospitals were complying, and other officials of HEW believe that, when July 1 rolls around, the number of holdouts will not exceed 500 (the pessimists say 1000). But the availability of facilities in Des Moines will not ease the crisis in Birmingham or New Orleans.

HEW’s guidelines for compliance are strict. Rigidly enforced, they would produce major changes not only in the quality of care available to Negro patients but also in the number of opportunities offered to Negro medical professionals. They include not only open-admissions policies but open assignment of patients to rooms and other hospital services, and nondiscriminatory granting of staff privileges.

A number of the dodges frequently used by hospitals in maintaining segregation are cited in the guidelines and specifically outlawed: A typical dodge is denial to Negro physicians of staff privileges on the grounds that they are not members of the local medical societies—which also exclude Negroes. The guidelines say “Staff privileges [may not be] denied professionally qualified personnel on the basis of . . . nonmembership in an organization which discriminates on the basis of race, color, or national origin.”

What use HEW will make of its guidelines is another matter. In the past, its performance in the civil-rights arena has strikingly failed to match its rhetoric: “They’ve had accordion standards of compliance,” complained one civil rights lawyer who has been active in the health field. A special staff to handle the problems of “equal health opportunity” was not created until almost 18 months after the civil rights legislation was passed; meanwhile the department continued to pour money into segregated hospitals and failed to take action on hundreds of complaints brought by civil rights groups. “This time we mean it,” said one HEW official who has been concerned with Title VI activities. But to Southern hospital administrators, who are watching Washington as closely as Khrushchev watched Kennedy during the missile crisis, the voice may sound like that of the boy who cried wolf.

Southerners are reportedly particularly troubled by a provision requiring that white and Negro patients be assigned to semiprivate rooms (the accommodations most medicare patients will use) without respect to race. Some hospitals are said to be determined to let federal support lapse and seek community backing for continued segregation in their facilities. But most appear to be waiting to see how far they will in fact be forced to go.

The truth is that, in a game as fraught with political perils as the withholding of federal funds, even the highest departmental officials and even the most dedicated integrationists can go only as far as the President will let them. The impending medicare crisis caught Johnson’s attention only belatedly, and so far his performance has been precisely what the civil-rights activists would have sought. In a special meeting with hospital administrators and health leaders on 15 June he warned plainly that “The Federal government is not going to retreat from its clear responsibility.” But at the moment he spoke only 17 of Mississippi’s 132 hospitals were complying, and Mississippi’s Senator James Eastland was reported to be knocking at the door with requests for leniency—and Eastland has, in his own way, at least as much political potency as Chicago’s mayor Richard Daley, who won out in a recent Title VI confrontation with former Commissioner of Education Francis Keppel. What will Johnson say on 1 July? “It’s like the Clairol ad,” commented one HEW official: “Only the President knows for sure.”

To many civil rights leaders, strict enforcement of Title VI in the medicare program represents a last chance to overturn what one described as the “racism that infects American medicine.” It is much easier not to accredit a hospital in the first place than to disaccredit it after it has received approval. Certification of hospitals for medicare provisions will supply them with certification for a whole range of federal programs now being developed. Relaxation of the standards set in the guidelines would therefore have the effect of sealing in discrimination for a long time to come. On the other side are not just the voices of the Eastlands but the logic of numbers: people will not be sicker after July 1, but increasing numbers of them, armed with federal insurance, will undoubtedly be seeking treatment. Whether they will continue to get it in rooms marked “Negroes only” is, at this writing, still an open question.—ELINOR LANGER
NEW FROM LABCONCO
Micro Kjeldahl Distillation Unit

JUST PLUG IT IN and you're ready for fast, accurate determinations. This is LABCONCO's new, completely preassembled one-piece still for steam distillation of micro amounts of nitrogen and other micro steam distillations. Saves operator time. Saves bench space (less than 1 sq. ft. required). Saves money. For more information contact your laboratory supply dealer or write LABCONCO, 8805 Prospect Avenue, Kansas City, Mo. 64132.

Klett Summerson
Photoelectric Colorimeter

No. 800-3
Test Tube
Model

KLETT COLONY MARKER and TALLY

This instrument takes the drudgery and error out of the counting of bacterial colonies.

Klett MANUFACTURING CO., INC.,
179 East 87th Street, New York, 28, N.Y.

ISCO DENSITY GRADIENT FRACTIONATORS when used with an ultraviolet analyzer such as the ISCO Model UA or 220:

*RECORD UV absorption throughout the density gradient.
*DETECT as little as 1 microgram quantities of nucleoprotein in concentrations as small as 1 microgram per milliliter.
*SHOW accurate quantitative results on chart record.

ISCO's density gradient fractionation apparatus is the only equipment which will force a sucrose or other gradient out the top of the centrifuge tube and through a UV monitor. This arrangement eliminates the zone distortion and limited accuracy resulting from pumping or draining the gradient column through a hole or needle inserted in the bottom of the tube.

Quantitative analysis with ISCO fractionation apparatus is easily accomplished since the area under the UV peaks on the recorder chart is directly proportional to the total mass of material in the corresponding zone.

This equipment is described by Dr. M.K. Brakke in his paper:
Photometric Scanning of Centrifuged Density Gradient Columns, Analytical Biochemistry, 5, 271, (April 1963). We will send a reprint of Dr. Brakke's paper on request. ISCO Density Gradient Fractionators are priced at $395 and $1350.

ISCO DENSITY GRADIENT FRACTIONATORS

Model T Fraction Collector
Model D Density Gradient Fractionator
Model UA Ultraviolet Analyzer
(Order unit is mounted on fractionator)

For more information send for brochure DG-27F or complete catalog.

ISCO MANUFACTURING COMPANY, INC.
5624 SEWARD AVE. LINCOLN, NEBRASKA 68507 U.S.A.
PHONE (402) 434-8265 CABLE ADDRESS: ISCOLAB LINCOLN

24 JUNE 1966 1771
Pollution raise extraordinarily intricate questions. The mysterious smoking-lung cancer puzzle awaits new approaches.

4) Drugs administered for prolonged periods (for example, tranquilizers, agents for substitution therapy, "the pill" for contraception) may affect almost any system of the body, generally in unpredictable ways. The thalidomide tragedy dramatically highlights effects on reproductive performance.

5) Carcinogenesis remains high on the list of the leading causes of death. Studies of chronic toxicity offer advantages (for example, predictability of calendar and of costs). The disadvantages are well-known—the empirical results, the fallibility of predictions based on animal data. The responses of many species and strains must be related to those of man. New statistical procedures can strengthen chronic studies. An international center of toxicological information should be established; the World Health Organization might logically serve as the repository.

Although there was no specific grouping on any one day of papers emphasizing general physiology, the interests of this group were represented throughout the program. Areas covered included excitable membranes, molecular physiology, cell physiology, and subcellular structures. There was also a perceptible and welcome trend in papers dealing with comparative physiology in connection with functions of all systems.

The relatively small number of papers presented in other fields may have been due to the fact that many other meetings and symposia were held before, during, and after the congress meetings, and their programs and proceedings were not included in the congress program or in the official registration lists. Thus, symposia on the physiology of the activity of the "AMA" were held on 31 August and 1 September in Tokyo, on comparative neurophysiology on 10–12 September in Tokyo, on olfaction and taste on 11–13 September at Lake Yamanaka (together with a conference on food and water intake), and on environmental physiology in Kyoto to 13–17 September. There was also a symposium on structure and function of the limbic system in Hakone on 10–12 September which supplemented the papers given at the congress meetings.

The congress was also the occasion for meetings of other groups which now...
have established programs of their own. A typical example is the group of investigators working in respiratory physiology who, at the previous congress in Leiden, held an excursion and dinner in honor of Wallace Fenn. A similar program was developed in Tokyo where the VA/Q Club of Japan arranged a tour to Mt. Fuji and Hakone on 5 September.

An important by-product of the congress meetings was the opportunity for the various groups in Japanese schools to have the privilege of visits and lectures from the many scientists attending the meetings. Many of the participants visited the medical schools in Tokyo, Osaka, Kyoto, and in other cities.

The congress was held under the auspices of the International Union of Physiological Sciences. The lectures and symposia are available in a monograph published by the Excerpta Medica Foundation as International Congress Series No. 87.

HYMEN S. MAYERSON
The Touro Infirmary,
New Orleans, Louisiana

Great Lakes Research

The Great Lakes contain about 30 percent of the world's fresh water, and their basin is estimated to be capable of supporting about 3 billion people. However, much of the water in the lakes is not referred to as fresh, and we are experiencing difficulties in supporting 1/100 as many people. The 9th conference on Great Lakes Research was held at IIT Research Institute in Chicago, 28–30 March 1966. Over 400 persons attended to listen to 120 papers and panel discussions. The topics included water budget and quality, biology, physical limnology, air-water interactions, marine geophysics, geology, and inorganic materials, as well as some economic and legal aspects.

Introductory remarks by B. M. McCormac (IIT Research Institute) emphasized that in planning this conference he concluded that, (i) no single U.S. government agency was responsible for the total Great Lakes problem; (ii) there is poor management of water, but no water shortage; (iii) current pollution control steps are based on very fragmentary information; (iv) the failure of industrial organizations to present papers at the conference was due to fear that the data might be used
Now...
High Flux Densities
in a 1-Micron Spot

with the new TRG Biolaser

The versatile new TRG Biolaser offers the medical and biological researcher a powerful new tool for use in studies at the cell level. Specific areas of application are: cell microsurgery and coagulation; electric field interaction; pathology; genetics; other branches of microscopic research.

Adapters are available to permit simultaneous photography and irradiation of the specimen. Cinemicrography, time-lapse photography, and closed-circuit television techniques can be applied to broaden the instrument's capabilities as a research tool.

Special Features • The coherent light output of the Biolaser can be focused to spots as small as one micron • A simple x-y control permits precise spot positioning • Triggering can be remote or by panel pushbutton.

For more complete information write: TRG Inc., Electro-Optical Products, Route 110, Melville (Long Island), New York 11746. Tel: (516) 531-6343.

Specifications
Flux Density on Stage: up to 10^4 Joules/cm^2
Wavelength: 6943Å
Pulse Length: 150 µsec
Repetition Rate: 1/min
Microscope: Leitz Ortholux or Labolux standard; others optional
Camera: 2½" x 3¼" Polaroid standard; others optional

against them; (v) there is insufficient multidisciplinary research; and (vi) that although it seems likely that municipalities will eventually be forbidden to inject any sewage effluent into the lakes, the issue is not being faced directly.

The welcoming address was delivered by T. F. Bates (science adviser and assistant to the Secretary of the Interior). When the Federal Water Pollution Control Administration is transferred to the Department of Interior on 1 May 1966, Interior will have a vast responsibility in the Great Lakes. Bates believes that this transfer will improve the U.S. government's role in the support of Great Lakes research. The Cabinet and the White House are going to give more attention to the Great Lakes. The emphasis will reflect the transportation, recreation, municipal, and industrial needs. Much more scientific limnological data must be generated and intelligibly communicated before an effective lake management program can be expected.

A number of papers and discussions were devoted to water quality and budget. Although great interest was shown in T. W. Kieran's (Gibb, Underwood, and McLellan, Sudbury) grand canal scheme for recycling Canadian waters for both Canadian and U.S. use, it was generally believed that there is not a water shortage, but very poor water management. Bates suggested that if there is a water shortage, weather modification might prove more feasible than mass maneuver of North American water flow. It is difficult to study the water budget properly because evaporation has never been adequately measured. It was pointed out by C. R. Ownbey (Federal Water Pollution Administration) that water standards must be precisely specified. Different parts of the lakes will have different standards. These standards are very difficult to establish because of a lack of information about many of the pollutants.

The papers on physical limnology emphasized mass movements of water, temperature distribution, and dissolved oxygen content. As attempts are being made to obtain synoptic data, experimenters are being faced with a large data collection and processing task. Most of these studies were undertaken to investigate the health of the lakes. Dissolved oxygen content provides a good measure of water quality. The dissolved oxygen is in turn dependent upon temperature distribu-
For Research Biochemicals
Sigma has no Peer!

In the rapidly expanding field of Lipid Research the demand for High Purity Lipids exceeds the available supply. Here at Sigma we cannot claim to have all the answers—or products. We don't even have much experience as yet. But we are working vigorously trying to bring together the products of numerous large and small laboratories claiming to have 99-100% pure lipids. Unfortunately, as is so often true, we cannot always trust the labels we receive. As we develop our own knowledge of lipid analysis, we are finding more and more "pure" samples to be badly contaminated. Some of our suppliers vehemently disagree. Sometimes they prove their point—but more often we prove ours! Slowly and painfully we are learning which suppliers are dependable—and conversely, which are not. Hopefully we will be successful in establishing production of the non-available lipids right here in the Sigma Laboratories. If all goes well and if we are able to acquire top notch lipid chemists, we will do for lipid chemistry what we have done for Nucleotide chemistry—Histochemistry — and Enzymology — establish a truly dependable source for most of your high purity Lipid needs—honestly labeled with our own assay results—and most important—at really low prices!

In the meantime, you are protected insofar as is possible—when you specify—"Sigma!"

Remember—your success might be tied in to our success in achieving this goal.
If you can help us, Please call.
If we can help you, Please call.

If anyone is interested in helping us to develop the isolation and assay methods for Lipids, please call at once.
Sigma is one of the Fastest Growing and most dynamic reagent producers in the entire World. The name "Sigma" is the Hallmark of biochemical quality.

ORDER DIRECT
from ANYWHERE in the WORLD

TELEPHONE COLLECT

Day, Station to Station, Prospect 1-5750
Night, Person to Person,
Dan Broida, WYdown 3-6418

TWX (Teletype) Day or Night: COLLECT-314-556-0594
TELEGRAM: SIGMACHEM, St. Louis, Missouri

The Research Laboratories of
SIGMA CHEMICAL COMPANY
3500 DE KALB ST. • ST. LOUIS 18, MO. • U.S.A.

Manufacturers of the finest biochemicals available

Distributed in the United Kingdom through
Phone RENown 5823 (Reverse Charges)

Prepare Calibration Gases with the
CALI-GAS MIXING PUMP

Gas analysis accuracy depends on the accuracy and availability of high quality gas standards in sufficient variety for full range calibration of your analyzers. Such high quality and stable gas standards are difficult to obtain, expensive, and create storage problems.

With ½ a gas mixing pumps and 1 tank of 100% CO₂ or other gas, you can obtain the exact calibration ranges, accurate to ±0.05%, your instruments require.

These precision pumps consist of durable bronze gears, and double, alternating piston systems mounted in an oil bath housed in non-degradable plastic. Mixing ratios are obtained by interchanging paired gears outside the housing.

Prices from $755

Write for technical details.

INSTRUMENTATION ASSOCIATES, INC.
17 West 60th Street, New York, N.Y. 10023 • (212) 5-0840
tions and the motion of water masses. The dispersal of effluent by lake currents and eddies has been investigated by G. T. Csanady (University of Waterloo). Although one is interested in probability distributions, only some mean-value data exists. Preliminary results indicate that horizontal diffusion is related to the complex current system and vertical diffusion to eddies. J. L. Verber (Federal Water Pollution Administration) has made extensive current measurements in the lakes which show that complex inertial currents are found in all the lakes at all depths, and at all times of the year.

Several papers covering the whole field of biology from microorganisms to fish were presented. The dominant species are constantly changing. Many parts of the lakes and the contiguous stream and river systems are extremely hazardous because of contamination with the intestinal disease-producing bacteria, salmonella, according to L. E. Scarce (Federal Water Pollution Administration). It is hazardous to swim, fish, or even get the water spray in the face. Tests show that many types of salmonella are not completely removed by the treatment plants of the Chicago Sanitary District. The inland waters of the Chicago area are especially contaminated, as are parts of southern Lake Michigan from time to time.

Many experimenters have been examining benthic mud samples. The dominant species vary with time. Especially in Lakes Michigan and Erie, the present dominant forms of midge larvae are indicative of pollution. N. W. Brit (Ohio State University) showed that 15 years ago the dominant benthic organism in western Lake Erie was the Mayfly, Hexagenia. Many of us remembered how they would collect knee-deep around the base of street lamps near the lake. The Mayfly has almost disappeared to be replaced by the Chironomidae, which is now declining in favor of the Tubificidae.

An excellent panel on eutrophication was monitored by A. D. Hasler (University of Wisconsin). Eutrophication tends to be used to mean productivity and is a general indicator of the pollution of a lake. The indices of eutrophication were discussed by A. M. Beeton (University of Wisconsin). Not enough indicators of the ecological state of the lakes are being monitored. More research is needed to select the proper indicators. There is also some confusion about the trends of those indices that have been measured, such as ni-

NEW DOUBLE DUTY INSTRUMENT

AGITHERM

Hot Plate—Magnetic Stirrer

New low cost plus advanced design features

Now you can heat and stir simultaneously with WACO AGITHERM. Heavy-duty individual controls allow use of either stirrer or hot plate independently when desired.

The 500 watt hotplate can be set thermostatically at any temperature up to 620° F. Pilot light indicates when heat is on. The perforated stainless steel case assures cool operation of motor. Compact design, 6 1/2” diameter by 5” high.

No. F-54500 Agitherm Stirrer Hot Plate, complete with one each glass and Teflon covered stirring bars 3/4” x 1 1/4”, for 115 volt, 60 cycle, A. C.$67.50.

ORDER NOW

LUMBER SUPPLIES AND EQUIPMENT

WILKENS-ANDERSON CO.
trates and phosphates. It is apparently difficult to compare data because of variations in experimental techniques and uncertainty as to whether a specific phosphorus compound or total phosphorus was measured.

G. L. Harlow (Federal Water Pollution Administration) discussed the sources of nutrients. At certain times of the year, phosphate measurements can be significantly biased by runoff from farmland; however, the major source of nutrients is from sewage effluent. Nutrients in Lakes Erie, Michigan, and Ontario are showing significant increases. These results are compatible with the measurements of the distribution of biological species as reported by C. F. Powers (University of Michigan). The dominant species reflect the increased pollution in the last 30 to 40 years and the spatial distribution reflects the injection of sewage effluent by the various lake border towns. J. C. Ayers (University of Michigan) checked to see if water temperature changes could stimulate the eutrophic plankton species now being observed. He concluded that this is not the case after a very detailed study of the available weather records for the last century. Although the air temperatures over Lakes Erie and Michigan are rising, Lake Erie's water temperature has an upward trend, while Lake Michigan's has a downward trend. Lake Erie, being a shallow lake, more closely follows the air temperature, whereas the deeper Lake Michigan depends on storms for mixing. The number of storms over Lake Michigan has been decreasing.

The removal of pollutants in treatment plants was discussed by G. A. Rohlich (University of Wisconsin). Much more research is required in order to be able to remove more than 99 percent of the effluent. Current techniques of removing 50 to 75 percent of the phosphates are not adequate when the total remaining quantity is considered. Research is continuing on techniques to remove various organic and inorganic compounds. This research should lead to a building block design of a treatment plant depending on the types of pollutants to be removed.

Pollution control programs are being developed under the supervision of W. Kehr (Federal Water Pollution Administration). The Lake Michigan and Lake Erie plans should be ready about 1 January 1967, with the other plans expected within the following 12 years.
Freas- Low Temperature Incubators pay off in round-the-clock protection for your valuable samples

With a Freas unit, your samples will enjoy a precise and dependable environment day in and day out. For that matter, year in and year out. Freas incubators are famed for trouble-free longevity; but don't take our word for it. What with thousands of these units in continuous service for years, voice-of-experience testimony is easy to come by.

Whatever samples you have under study, you'll get the temperature level you need—from 5° to 50°C—with a uniformity as low as ±0.6°C. And ten cubic feet of unobstructed working space in the cabinet. External controls permit adjustments and readings without upsetting test conditions. Four models cover a broad area of applications. All carry a five year guarantee.

Model 805 is the basic unit that fills many heating and cooling needs — complement fixation tests, serum studies, enzyme tests, etc. It has long been the outstanding cabinet for APHA Biochemical Oxygen Demand tests. Model 806 includes chamber illumination for photosynthesis. Model 807 includes a removable revolving drum for tissue culture work. Model 808 includes illumination plus automatic cycling of temperature and illumination to simulate circadian conditions.

Get the long-and-happy-life story of the Freas line from your nearest Precision Scientific Company Distributor. Or write us.

Since 1920 The Finest in Quality Laboratory Apparatus

3737 W. Cortland Street, Chicago, Illinois 60647
Local Offices in New York • Chicago • Los Angeles

months. The standards are difficult to select; however, they will be flexible, that is, they will vary with locale. When more research has been accomplished, the standards will be modified, if necessary. Peter Kuh (Enforcement Branch of the Federal Water Pollution Administration) discussed the enforcement policies. It is hoped that his branch will do most of their enforcement through informal discussions rather than formal hearings or court actions.

There does not seem to be any doubt that Lakes Erie, Michigan, and Ontario are seriously polluted and are getting worse year by year. There are insufficient data on which to base decisions. The biological cycles, chemical cycles, and physical properties of the lakes are not adequately known. There is no doubt that the lakes can be restored to a desirable ecology, but it will require much research, time, and money. Although Lake Erie is more polluted than Lake Michigan, it can probably be improved easier because there is a significant water flow in Lake Erie, whereas Lake Michigan is a cul-de-sac. These lakes will probably require some positive action, such as the introduction of specific biological species, recovering the bottom with sand, injection of oxygen, and other actions. It seems to be only a matter of time until it is realized that no sewage or other waste can be deposited into the lakes.

In the last session J. L. Verber conducted a review of future Great Lakes research plans. Additional cooperation and exchange of information are required. Although there will be more research accomplished next year than last, it will not be adequate. The Universities of Michigan and Toronto have outstanding research programs, and the University of Wisconsin gives indication of significant growth. The U.S. government agencies have a large amount of research but the only significant State research program is conducted by Ontario. In the United States only Illinois seems to have an active program.

This conference was sponsored by IIT Research Institute in cooperation with the Great Lakes Research Division, University of Michigan, which will publish the proceedings. The next conference will be held at the University of Toronto in April 1967.

Billy M. McCormac James E. Ash

IIT Research Institute, Chicago, Illinois 60616
Forthcoming Events

July

21–24. Data Processing, intern conf., Chicago, Ill. (Data Processing Management Assoc., 524 Busse Highway, Park Ridge, Ill. 60068)

24–30. Pharmacology, intern. cong., São Paulo, Brazil. (M. Roche e Silva, Dept. of Pharmacology, Faculty of Medicine, Univ. of São Paulo, Ribeirao Preto, São Paulo)

25–27. Data Acquisition and Processing in Biology and Medicine, conf., Univ. of Rochester, Rochester, N.Y. (Office of Technical Activities Board, Inst. of Electrical and Electronics Engineers, 345 E. 47 St., New York 10017)

25–29. Interpretation and Therapy of Cardiac Arrhythmias, conf., Hahnenmann Medical College and Hospital, Philadelphia, Pa. (L. S. Dreifus, Hahnenmann Medical College, 230 N. Broad St., Philadelphia)

25–31. Genetics, intern. symp., São Paulo, Brazil. (G. Pavan, Dept. of Biology, Univ. of São Paulo, Caixa Postal 8105, São Paulo, Brazil)

28–31. Psychosomatic Medicine in Obstetrics and Gynecology, 3rd intern. cong., Vienna, Austria. (A. H. Palmrich, Vienna Acad. of Medicine, Alserstr. 4, Vienna 9)

29–30. Linguistic Society of America, Univ. of California, Los Angeles. (A. A. Hill, Box 8120 University Station, Austin, Tex.)

See 3 June issue for comprehensive list

This Blickman cabinet has had its insides out 5 different times

(It's about to be up-to-date again)

Laboratory projects can last for years. Or just days. New people want work areas to suit them, not a tradition.

Storage needs can change overnight. Blickman's Conflex furniture can change a lot faster.

It lets you vary your storage needs to suit a project or personnel. All it takes is a screw driver and a few minutes.

Change cupboards to drawers. Switch deep drawers to shallow ones. Mix drawer and door sizes.

A single Conflex cabinet gives you more than 800 different possible arrangements.

In other words, Conflex furniture doesn't become obsolete when you need different laboratory facilities. Conflex becomes something different.

Use that coupon to find out just how many ways.

S. Blickman, Inc.
6906 Gregory Avenue, Weehawken, N. J. 07087
Please send information on Conflex lab furniture

Name___Title______________
Company/Institution______________________________
Address__
City__________________State________Zip________

Blickman

24 JUNE 1966
NO SCIENTIFIC EDUCATION IS COMPLETE WITHOUT ANALOG SIMULATION

Write for your copy of "Analog Simulation in Scientific Education."

It shows you how analog computers are being successfully used in over 500 educational institutions in education and research programs.

It gives you important new information on analog computation both as a subject of study and as a vital scientific tool.

Included in the report is a section describing actual applications in engineering and science departments with comments by leading educators. There are descriptive notes on analog computer fundamentals and informative material on the characteristics of computers and how they may be applied in research, classroom instruction and student laboratory use.

READ THIS REPORT.

Available free to all faculty members. For your copy, send the coupon to Electronic Associates, Inc., West Long Branch, N. J. 07764. S-66

NAME

TITLE

SCHOOL

ADDRESS

CITY

STATE

ZIP

EAI®

ELECTRONIC ASSOCIATES, INC.

West Long Branch, New Jersey

Science, Michigan State Univ., East Lansing)

31–5. DERMATOLOGY, 13th intern. congr.,

Munich, West Germany. (C. G. Shirren,

Frauenlobstr. 9, Munich)

31–6. Mycology, 4th European congr.,

Warsaw, Poland. (Intern. Union of Biolo-

gical Sciences, General Secretariat, Dept.

of Zoology, Univ. of Washington,

Seattle 98105)

August

1–3. Electron Spin Resonance Spectro-

copy, symp., American Chemical Soc.

Div. of Physical Chemistry, Michigan

State Univ., East Lansing. (M. T. Rogers,

Dept. of Chemistry, Michigan State Univ.,

East Lansing 48823)

1–4. Psychoanalysis, 2nd Pan American

congr., Buenos Aires, Argentina. (M. Heiman,

1148 Fifth Ave., New York, N.Y. 10028)

1–4. Toxicology and Occupational Medi-

cine, 5th inter-American conf., Miami,

Fla. (W. B. Deichmann, Univ. of Miami

School of Medicine, Coral Gables, Fla.

33134)

1–5. Instrumentation Science, 3rd re-

search conf., Instrument Soc. of America,

William Smith College, Geneva, N.Y. (K.

B. Schnell, ISA, 530 William Penn Pl.,

Pittsburgh, Pa. 15219)

1–6. Nuclear Physics, intern. seminar,

Joensuu, Finland. (Research Inst. for Theo-

retical Physics, Univ. of Helsinki,

Helsinki, Finland)

1–6. European Seismological Com-

mission, mtg., Copenhagen, Denmark. (E.

Peterschmitt, Inst. de Physique du Globe,

38, boulevard d'Anvers, Strasbourg,

France)

1–6. Upper Mantle, symp., Copenhagen,

Denmark. (H. C. Smith, Upper Mantle

Commission, Geological Survey of Canada,

Ottawa, Ont.)

Psychology, 18th congr., Moscow, U.S.S.R.

(Secretary-General, Dept. of Psychology,

Univ. of Moscow, Marx Ave. 18, Moscow)

2–4. Vaso-Active Polypeptides, symp.,

Ribeirão Prêto, Brazil. (M. Rocha e Silva,

Dept. of Pharmacology, Faculty of Medi-

cine, Ribeirão Prêto)

2–5. Synaptic Mechanisms, symp., Rio

de Janeiro, Brazil. (C. Chagas, Inst. of

Biophysics, Natl. Faculty of Medicine,

Avda. Pasteur 458, Rio de Janeiro)

3–8. International Geographical Union,

Latin American regional conf., Mexico

City, Mexico. (A. Bassols Batalla, Mexican

Soc. of Geography and Statistics, Justo

Sierra 19, Mexico City 1)

3–10. Nutrition, 7th intern. congr., Hamburg,

West Germany. (U. Ritter, 1st Medical

Clinic of the University, Martinistr.

52, Hamburg 20)

4–11. Psychology, 18th intern. congr.,

Moscow, U.S.S.R. (A. R. Luria, Univ. of

Moscow, 13 Frunze Str., Moscow G. 19)

7–12. Latin American Assoc. of Phys-

iological Sciences, 7th mtg., Mar del Plata,

Argentina. (V. G. Foglia, Paraguay 2155

7th flr., Buenos Aires, Argentina)

8–10. Society for Cryobiology, annual

mtg., Boston, Mass. (I. Wodinsky, A. D.

Little Co., 30 Memorial Dr., Cambridge,

Mass.)
8-11. Biometry and Statistics in Food, Population, and Health Research, mtgs., Mexico City, Mexico. (General Secretariat, Intern. Union of Biological Sciences, Dept. of Zoology, Univ. of Washington, Seattle 98105)

8-12. Heat Transfer, 3rd intern. conf., Chicago, Ill. (T. F. Irvine, College of Engineering, State Univ. of New York, Long Island Center, Stoney Brook)

8-13. Anesthesiology, 2nd European congr., Copenhagen, Denmark. (H. Poulsen, Dept. of Anesthesia, University Hospital, Aarhus, Denmark)

11-18. Animal Production, 9th intern. congr., Edinburgh, Scotland (Congress Secretary, 5 Hope Park Sq., Edinburgh 8)

14-18. Canadian Pharmaceutical Assoc., 59th conv., St. John, New Brunswick. (P. W. Bell, 175 College St., Toronto 2B, Ont.)

14-19. American Inst. of Biological Sciences, 17th annual, Univ. of Maryland, College Park. (AIBS, 3900 Wisconsin Ave., Washington, D.C.)

The following societies will meet in conjunction with the AIBS. Additional information is available from AIBS or from the program chairmen listed below:

American Bryological Soc. (W. B. Schofield, Dept. of Botany, Univ. of British Columbia, Vancouver, Canada)

American Fern Soc. (I. Knobloch, Dept. of Botany and Plant Pathology, Michigan State Univ., East Lansing)

American Fisheries Soc. (L. E. Cronin, Natural Resources Inst., Administration Bldg., Univ. of Maryland, College Park)

American Genetic Assoc. (S. Burhoe, American Univ. Graduate School, Washington, D.C.)

American Microscopical Soc. (R. M. Cable, Dept. of Biological Sciences, Purdue Univ., Lafayette, Ind.)

American Soc. for Horticultural Science (A. H. Thompson, Dept. of Horticulture, Univ. of Maryland, College Park)

American Soc. of Plant Physiologists (R. S. Loomis, Dept. of Agronomy, Univ. of California, Davis)

American Soc. of Plant Taxonomists (L. R. Heckard, Dept. of Botany, Univ. of California, Berkeley)

American Soc. of Professional Biologists (A. Dickman, 1415 W. Erie Ave., Philadelphia, Pa.)

American Soc. of Zoologists (L. E. Delaney, Wabash College, Crawfordsville, Ind.)

How

LAB-CREST 310

Makes Gas Chromatography

A Versatile Research Tool

- Accepts All High-Sensitivity Detectors—Argon ionization, hydrogen flame, cross-section, electron capture—even two types simultaneously. Plug-in detectors interchange in seconds.

One standard electrometer provides 5 ranges of input impedance to accommodate the detectors. No accessories or batteries required.

- Accepts All Columns—Single or dual; analytical, semi-preparative, or capillary; all with on-column injection. Fittings make column changes easy without tools even while hot.

- Operates Isothermally or Temperature-Programmed—Fully proportional, solid-state, direct reading controller holds column oven temperature within 0.5° C. at any selected value to 500° C. Optional solid-state programmer raises column temperature at any of 6 different rates from 0.5° to 10° C. per minute.

- Low Dead Volume—Minimum volume requirements permit analysis of high molecular weight compounds.

- Low Background Noise with unique dynamic feedback network in electrometer.

Versatile Lab-Crest 310 gives you complete chromatograph capability for critical research work in one compact bench-top unit—at a surprisingly low cost. For full details, write to:

FISCHER & PORTER COMPANY

Lab-Crest • SCIENTIFIC DIVISION

5966b County Line Road

Warminster, Pa. 18974, Phone 215-675-6000

A Complete Line of Laboratory and Scientific Glassware • Special Glass Fabrication • Glass Process Pipe and Drainline
Animal Behavior Soc. (E. M. Banks, Dept. of Zoology, Univ. of Illinois, Urbana)
Biometric Soc.—ENAR (J. Meade, Univ. of Arkansas Medical School, Fayetteville)
Botanical Soc. of America (W. A. Jensen, Dept. of Botany, Univ. of California, Berkeley)
Ecological Soc. of America (G. M. Woodwell, Dept. of Biology, Brookhaven Natl. Lab., Upton, L.I., N.Y.)
Mycological Soc. of America (P. L. Lentz, Crops Research Div., USDA, Beltsville, Md.)
Natl. Assoc. of Biology (W. K. Stephenson, Earlham College, Richmond, Ind.)
Nature Conservancy (Local Representative: W. Van Eck, Dept. of Agronomy and Genetics, West Virginia Univ., Morgantown)
Phi Sigma (Local Representative: R. G. Stross, Dept. of Zoology, Univ. of Maryland, College Park)
Phycological Soc. of America (B. C. Parker, Dept. of Botany, Washington Univ., St. Louis, Mo.)
Society for Industrial Microbiology (J. Coats, Upjohn Co., Kalamazoo, Mich.)
Society of Protozoologists (R. W. Hull, Dept. of Biological Sciences, Florida State Univ., Tallahassee)
Tomato Genetics Cooperative (Local Representative: F. Angell, Dept. of Horticulture, Univ. of Maryland, College Park)
Wildlife Disease Assoc. (C. Herman, Patuxent Wildlife Disease Assoc., Laurel Md.)

14-21. American Assoc. of Clinical Chemists, natl. conv., Miami Beach, Fla. (G. T. Lewis, Univ. of Miami Medical School, Coral Gables, Fla.)
15-18. Forensic Immunology, Medicine, Pathology, and Toxicology, 4th intern. mtg., Copenhagen, Denmark (J. Voight, Dis Congr. Service, Skindagere 36, Copenhagen K)

Chromatography

Columns from Lab-Crest have more useful features than ever...

Only Lab-Crest has a threaded glass and Teflon® eluent regulator for column pressurization.

A Lab-Crest exclusive—removable and replaceable water jacket and gaskets. May be purchased separately to modify your standard Lab-Crest columns.

Choice of five fittings. The one shown has a threaded needle valve and Teflon tip...also available with glass tip. Other models include a stop-cock, plain glass tip and an all new fitting designed to accept small diameter tubing.

Want more details and prices? Write for Catalog #80A270.

*T.M. E. I. DuPont de Nemours & Company (Inc.)

FISCHER & PORTER COMPANY

5964a County Line Road
Warminster, Pa. Phone 215-OS S-6000

Laboratory and Scientific Glassware • Special Glass Fabrication • Glass Process Pipe and Drainline

SCIENCE, VOL. 15

16. International Assoc. for the Prevention of Blindness, general assembly, Munich, West Germany. (J. P. Baillart, 47, rue de Bellechasse, Paris 7, France)

16-17. Central Nervous System Effects of Analgesic Drugs, symp., Santiago, Chile. (J. Mardones, Inst. of Pharmacology, Univ. of Chile, Casilla 12967, Santiago)

16-19. International Assoc. of Milk, Food, and Environmental Sanitarians, Minneapolis, Minn. (H. L. Thomasson, P.O. Box 437, Shelbyville, Ind. 46176)

19-28. Geology, 23rd intern. congr., Prague, Czechoslovakia. (Organizing Committee, Ustredni ustav geologicky, Malostranske namstí 19, Prague 1)

20-25. Diseases of the Chest, 9th intern. congr., Copenhagen, Denmark. (M. Kornfeld, American College of Chest Physicians, 112 E. Chestnut St., Chicago, Ill. 60611)

21-25. Electron Microscopy Soc. of America, San Francisco, Calif. (G. Thomas, Dept. of Mineral Technology, Univ. of California, Berkeley)

21-26. Hematology, 11th intern. congr., Sydney, Australia. (F. P. Walsh, 1 York St., Sydney)

21-7. British Assoc. for the Advancement of Science, 128th annual mtg., Nottingham, England. (Secretary, 20 Great Smith St., 3 Sanctuary Bldgs., London S.W.1)

22-24. Computer and Information Sciences, symp., Columbus, Ohio. (J. T. Tou, Communication Science Research Center, Columbus Laboratories, Battelle Memorial Inst., 505 King Ave., Columbus, Ohio 43201)

22-26. Society of Photo-Optical Instrumentation Engineers, 11th annual techni-
Fluid delivery rates... Precise... Consistent... Controlled... with new EMDECO Infusion Pumps!

Choose exactly the peristaltic pump you need — single- or dual-head, with single, multiple or variable delivery rates that are constant to ± 1% — even at levels as low as 0.03 and as high as 7.5 ml per minute. Quiet, contamination-free, they’re so reliable they can be trusted in the most delicate and demanding applications. Send for EMDECO Bulletin EB-3S.

THE ELECTRO-MECHANICAL DEVELOPMENT CO.
A Subsidiary of Coleman Instruments Corporation
42 Madison Street • Maywood, Illinois 60153

Self Sticking TIME TAPES & LABELS

You can use them to
IDENTIFY • MARK • COLOR-CODE
NUMBER • WARN • INSTRUCT
CORRELATE • DIRECT

Write for complete information about our full line of Laboratory Tapes and Labels.
SECOND IN ORION'S NEW SERIES OF CHEMICAL SENSING ELECTRODES MEASURES WATER HARDNESS DIRECTLY

measure divalent ion activities

Direct measurement of water hardness is just one application of Orion's new Divalent Ion Electrode. The electrode is equally sensitive to Ca++ and Mg++, is slightly less sensitive to Ba++, and slightly more sensitive to Zn++, Ni++, Fe++, Cu++, and Sr++. These ions can be sensed even in the presence of monovalent cations.

The electrode has applications in research studies of stability constants, precipitation, rates of corrosion and scale formation.

WATER HARDNESS MEASUREMENT

Since the electrode is equally sensitive to calcium and magnesium, it can be used for direct, continuous measurement of total water hardness. It permits direct measurement of calcium-magnesium, calculated as carbonates, to the 2 ppm level despite the presence of 500 ppm sodium chloride. Hardness may be determined over the 1,100 ppm range with speed and reproducibility characteristic of good pH electrodes. Direct measurement is a vast improvement in speed and convenience over older indirect gravimetric and titrimetric methods.

NEW CHEMICAL SENSING PRINCIPLE

The new electrode is used with a conventional expanded scale pH meter. The Orion electrode uses an entirely new principle of chemical sensing. In place of the glass sensing membrane of a conventional pH electrode, this unit uses a thin porous membrane containing a water-immiscible organic ion exchanger. Unlike fragile glass electrodes, the Orion electrode is made of unbreakable, corrosion-resistant fluorocarbon plastic.

AVAILABILITY

The new electrode is available from major laboratory supply houses in complete kit form with supplies for up to two years normal use. It is priced at $145.00.

CONDENSED SPECIFICATIONS

Concentration range: 10⁻⁵ - 10⁻² moles/liter CaCl₂
Selectivity: Equal for calcium and magnesium
pH range: 5 to 11 pH
Temperature range: 0° to 50°C
Electrical resistance: 25 meohms at 25°C.

☐ Please send a copy of the Divalent Ion Electrode bulletin.
☐ Please arrange a demonstration through my laboratory supply dealer.

Name_________________________ Organization_________________________

Street_________________________ City_________________________

State_________________________ Zip_________________________

Laboratory Supply Dealer_________________________

ORION RESEARCH INCORPORATED
Dept. D, 11 Blackstone St., Cambridge, Mass., 02139/Tel: (617) UN 4-5400
NEGA-FILE
New! 1 x 3 Microscopic Slide File

All Files Genuine Mahogany
AMS-1x3-G
- Files 1200 1 x 3 microscopic slides
- Featherboards keep slides upright
- Stop keeps drawer from spilling
- Brass-plated pull-1D card holder
- Used with 2 x 2 and 3 1/4 x 4 files
- Mahogany in natural grain finish
- Corners & pins for easy stacking

Each $16.95
NEGA-FILE has more than 50 files to choose from.
Sectional Nega-Files may be neatly stacked with supplied escutcheon pins. Build your files as the need occurs.

SEND FOR CATALOG OF COMPLETE FILING SYSTEMS

THE NEGA FILE COMPANY
FURLONG, PENNSYLVANIA

versatility!

COMPACT
INFUSION PUMP

Model 975 accepts glass or plastic syringes from 100 to 5 ml, which are held in snap-on holders. 30-speed gearbox permits selection of synchronous speeds over a 17,000-1 range. Rates are 0.00046-154.8 ml/min.; weight is 12 lbs.

ASK FOR YOUR FREE COPY OF BULLETIN 975

New concepts in animal cage systems become a reality at Harford.
- Primate cages
- Poultry cages
- Dog cages
- Rodent cages
- Cat cages
- Rabbit cages

Custom-Engineered animal cage systems

Harford
Metal Products, Inc.
Building 101
Aberdeen, Md. 21001
272-3400 (301)

NEW BOOKS
(Continued from page 1736)

A WRITETODAY
rinses
models
A-5162
reports.

How Animals Communicate. Bil

How to Use a Microscope. Walter
Shepherd. New American Library, New

Human Aims in Modern Perspective.
Outlines of a general theory of value
with special reference to contemporary social
life and politics. D. W. Gotschalk. Antioch
Press, Yellow Springs, Ohio, 1966. 133
pp. $4.

The Knower and the Known. Marjorie
283 pp. $6.

The Language of Life: An Introduction
to the Science of Genetics. George
Beadle and Muriel Beadle. Doubleday,
$5.95.

Life Styles of Educated Women. Eli
Ginzberg, Ivar E. Berg, Carol A. Brown,
John L. Herma, Alice M. Yohalem, and
Sherry Gorelick. Columbia Univ. Press,
New York, 1966. 236 pp. $5.95.

McGraw-Hill Yearbook of Science and
Technology. Compiled by the staff of
the McGraw-Hill Encyclopedia of Science
and Technology. McGraw-Hill, New

The Mathematical Practitioners of
Hanoerian England. 1714-1840. E. G. R.
Taylor. Cambridge Univ. Press, New

The Medical Department: Medical Ser-
vice in the Mediterranean and Minor
Charles M. Wiltsie. Office of the Chief
of Military History, Washington, D.C.,
1965 (order from Superintendent of

Men Near the Top. Filling key posts
in the federal service. John J. Corson and
R. Shale Paul. Johns Hopkins Press, Balti-

The Metropolitan Transportation Prob-
lem. Wilfred Owen. Brookings Institution,
Illus. $6.

Mind, Matter, and Method. Essays in
philosophy and science in honor of Her-
bert Feigl. Paul K. Feyerabend and Grover
Maxwell, Eds. Univ. of Minnesota Press,
Twenty-six papers on the following
topics: Philosophy of Mind and Rel-
ated Issues (10 papers); Induction, Con-
firmation, and Philosophical Method (11
papers); and Philosophy of the Physical
Sciences (5 papers).

Modern Technical Writing. Theodore
A. Sherman. Prentice-Hall, Englewood

Monographie des principales variétés

RESEARCH QUALITY RADIOCHEMICALS

CURRENT LIST

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>SPECIFIC ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mc/mM)</td>
</tr>
<tr>
<td>DL-Alanine-1-C14</td>
<td>10-30</td>
</tr>
<tr>
<td>2-amino-2-methylbutyric-1-C14 acid</td>
<td>5-25</td>
</tr>
<tr>
<td>L-Arginine-(guanido-C14)</td>
<td>15-25</td>
</tr>
<tr>
<td>monohydrochloride</td>
<td></td>
</tr>
<tr>
<td>L-Citelline-(carbamyl-C14)</td>
<td>5-25</td>
</tr>
<tr>
<td>Creatine-1-C14</td>
<td>5-15</td>
</tr>
<tr>
<td>Creatinine-1-C14 hydrochloride</td>
<td>5-15</td>
</tr>
<tr>
<td>DL-Cysteine-3-C14 hydrochloride</td>
<td>2-10</td>
</tr>
<tr>
<td>DL-Cystine-3-C14 hydrochloride</td>
<td>5-20</td>
</tr>
<tr>
<td>DL-3 (3, 4-Dihydroxyphenyl) alanine-2-C14</td>
<td>"DOPA"-C14</td>
</tr>
<tr>
<td>DL-5-Hydroxytryptophan-(methylene-C14) [3-(5-Hydroxy-3-indolyl)-alanine-3'-C14]</td>
<td>2-25</td>
</tr>
<tr>
<td>DL-Leucine-1-C14</td>
<td>20-40</td>
</tr>
<tr>
<td>L-Leucine-1-C14</td>
<td>5-10</td>
</tr>
<tr>
<td>DL-Lysine-1-C14</td>
<td>5-25</td>
</tr>
<tr>
<td>DL-Methionine hydrochloride</td>
<td></td>
</tr>
<tr>
<td>L-Methionine-(methyl-C14)</td>
<td>5-30</td>
</tr>
<tr>
<td>DL-Phenylalanine-1-C14</td>
<td>10-40</td>
</tr>
<tr>
<td>DL-Phenylalanine-2-C14</td>
<td>4-20</td>
</tr>
<tr>
<td>DL-Serine-3-C14</td>
<td>2-10</td>
</tr>
<tr>
<td>L-Serine-3-C14</td>
<td>5-25</td>
</tr>
<tr>
<td>DL-Tryptophan-(methylene-C14)</td>
<td>5-20</td>
</tr>
<tr>
<td>DL-Tryptophan-(benzene ring-14)</td>
<td>2-10</td>
</tr>
<tr>
<td>DL-Tryptophan-(methylene-C14) [DL-indolylalanine-3-C14]</td>
<td>20-40</td>
</tr>
<tr>
<td>L-Tryptophan-(methylene-C14) [DL-indolylalanine-3-C14]</td>
<td>10-25</td>
</tr>
<tr>
<td>DL-Tyrosine-2-C14</td>
<td>10-25</td>
</tr>
<tr>
<td>DL-Valine-1-C14</td>
<td>5-25</td>
</tr>
<tr>
<td>DL-Valine-4-C14</td>
<td>2-10</td>
</tr>
</tbody>
</table>

Data sheets available on request for
every compound. Please write for cur-
tent schedules containing complete
radiochemical listings and information.
Or call 312 827-4456 collect.
TISSUE CULTURE TUBE RACK WITH COVER

1. HANDLE AS A UNIT — TUBES CAN'T FALL OUT

2. SEAL TUBES WITH BARRIER FILM — SNAP ON COVER.

Patented "Kahlenberg Spring" holds tubes securely, yet allows easy removal for inspection. Handle the rack and tubes as a unit; dump contents; wash; cover with foil and sterilize — all without removing tubes. After filling tubes with cell suspension, lay a non-porous baffle (like Saran Wrap) over them — snap on cover. Holds 64 — 16mm. x 125mm. tubes; or built to your specifications.

10-TUBE UTILITY RACK ALUMINUM. HOLDS 16MM. TUBES. "KAHLENBERG SPRING." IDEAL FOR SHIPPING. $2.50

Write for Literature. Custom Orders Promptly Filled.

KAHLENBERG-GLOBE EQUIPMENT CO.
P. O. BOX 2803/SARASOTA, FLA.

RUGGED YET FAST-ACTING — THE NEW PHOTOVOLT ELECTRODES

Always ready for immediate use. Adaptable for all makes and models of pH meters. Manufactured in Photovolt's own U.S.A. plant. Choose from more than 20 different types.

1115 Broadway, New York, N.Y. 10010

Technical Manual explains in detail how to use Millipore Filters for microbiological analysis of:

Aerosols
Clinical Fluids
Drinking Water
Rinse Waters
Pasteurized Milk
Beer
Wine
Soft Drinks
Syrops
Sugar Products
Fuels and Oils
Surfaces
Floors
Utensils

36 pages of illustrated procedures in ADM-40 "Techniques for Microbiological Analysis" available free of charge from

Millipore FILTER CORPORATION 145 Ashby Rd., Bedford, Mass. 01730

SEND FOR FREE COPY

The Reluctant Space-Farers. The political and economic consequences of Ameri-
THE NEW PHOENIX SCANNING DUAL WAVELENGTH SPECTROPHOTOMETER

WANT TO MEASURE ABSORPTION CHANGES OF 3×10^{-3} O.D. UNITS IN TURBID MEDIA? Conventional spectrophotometers are not satisfactory under these stringent conditions, so we've provided an unconventional spectrophotometer for this purpose. It is a single instrument capable of operation both in a dual wavelength mode and as a high sensitivity scanning double beam spectrophotometer. Although it is primarily intended for studies in enzyme kinetics, oxidative phosphorylation and photosynthesis, it is expected to have application in other areas where small O.D. differences have to be measured in optically dense media. For complete technical details write for Bulletin PMD-1000.

PHOENIX PRECISION INSTRUMENT CO.
A Subsidiary of CENCO INSTRUMENTS CORP.
3803-05 N. 5th Street, Phila., Penna. 19140, U.S.A.
World Wide Sales and Service

The MULTIPURPOSE Recording Spectrophotometer,
Model MPS-50

provides distinct absorption bands of any materials—transparent, translucent or opaque—in the range of 190 to 2500 m$_\mu$. The large photocathode captures information missed with commonly used spectrophotometers.

Featuring;
- Basic design by Prof. K. Shibata of the opal glass method.
- New double detector system with a sample placed close to an end-on photomultiplier.
- A full line of unique attachments for microspectrophotometry, derivative spectrophotometry, chromatogram scanning, double beam fluorophotometry, absolute turbidometry, photometric titration, flow dichroism, etc.
- In vivo spectra of translucent and opaque biological samples without intricate extraction procedure, and difference spectrophotometry of translucent cell suspensions.
- Sensitive and accurate examinations of industrial materials and products as well as foods.

Please send for descriptive brochure.

SHIMADZU SEISAKUSHO LTD.
FOREIGN TRADE DEPT.
TOKYO OFFICE: Kanda-Mitsukojicho, Chiyoda-ku, Tokyo
KYOTO OFFICE: Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto
(Cable Add.: SHIMADZU KYOTO)

Sole Agents in U.S.A.
ATAKA NEW YORK, INC.
633, Third Avenue, New York 17, N.Y.
Tel. No. OXford 7-7480

24 JUNE 1966
DAEDALUS

provides an escape from a dilemma that confounds us all -- namely, that although we wish to understand in depth new developments in the worlds of scholarship, science, and public affairs, there is not enough time to read all the periodicals and books that lay claim to our attention.

DAEDALUS

seeks to bridge the gap between specialization and popularization, and to present a balanced study of one important subject at a time -- a topic which is of active concern to thoughtful men and women everywhere, but which, because of its complexity, is usually treated piecemeal in professional journals or superficially in the popular press. Each DAEDALUS issue is of lasting interest, and will be a permanent addition to your library.

Special Offer to AAAS Members!

REDUCED RATES
$5.50 - one year
$10.00 - two years
(reg. $6.50 & $12.00)
FREE ISSUE!
With each subscription entered now, we will send a bonus copy of SCIENCE AND CULTURE.

DAEDALUS

is happy to announce that special rates are available to AAAS Members. Subscribe now, and with your subscription, accept as our gift the timely and significant issue, SCIENCE AND CULTURE. This issue brings together the whole range of intellectually divergent views to examine the ways in which science affects and is influenced by the culture of our time. Major issues from this inquiry are discussed by such distinguished contributors as René Dubos, Margaret Mead, Gyorgy Kepes, Eric Weil and James Ackerman.

280 Newton Street, Brookline Station, Boston, Massachusetts 02146

DAEDALUS

Journal of the American Academy of Arts and Sciences

280 Newton Street, Brookline Station, Boston, Massachusetts 02146

Please enter my subscription to the quarterly journal, DAEDALUS, at the special AAAS rate, and send my FREE copy of SCIENCE AND CULTURE:

☐ one year: $5.50
☐ two years: $10.00
☐ payment herewith
☐ bill me

NAME__________________________
ADDRESS__________________________
CITY_______________________STATE_______ZIP______________

A collection of essays on the social and intellectual nature of man.

Conference and Symposium Reports

Twenty-nine papers on the following topics: Life: Its Nature and Origin (2 papers); The Cosmic Setting (2 papers); Recognition of Life and Some Terrestrial Precedents (5 papers); Some Extrapolations and Speculations (4 papers); Ap-
These polycarbonate graduated tubes are ideal for clinical work requiring precise graduations. Molded under extremely close tolerances, the accuracy of these graduations is well within Federal Specification Volumetric Apparatus, Glass-DD-581a.

Two sizes are available to fit most routine centrifuging requirements:

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Cap. ml</th>
<th>Outside Dim. mm.</th>
<th>Each price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2810</td>
<td>15</td>
<td>17 mm x 119 mm</td>
<td>$0.35</td>
</tr>
<tr>
<td>2809</td>
<td>50</td>
<td>29 mm x 133 mm</td>
<td>$0.50</td>
</tr>
</tbody>
</table>

Advantages

- Withstands high G-forces — guaranteed unbreakable.
- Precision dimensions, uniform wall thickness, reinforced shoulders and stress points give you a precise fit.
- Crystal clear.
- Positively shatterproof — withstands sledge hammer blows!
- Autoclavable — gives you repeated use under sterile conditions!
- Excellent chemical resistance!
- Very low cost — gives your budget a welcome relief from glassware expense!

Order today from your IEC dealer. Send for Bulletin PL.

Autoclear®

GRADUATED CONICAL CENTRITUBES™

proaches to the Exploration of Mars and Remote Observations (4 papers); Martian Landings: Unmanned (4 papers); Martian Landings: Manned (3 papers); and Avoiding the Contamination of Mars (5 papers).

Frontiers of Modern Scientific Philosophy and Humanism. The Athens meeting, 1964, organized by the Royal National Foundation. Elsevier, New York, 1966. 101 pp. Paper. $4.75. Six papers: "The Search for the mind" by Lord Adrian; "The classics" by John H. Finlay, Jr.; "Natural law and the structure of matter" by Werner Heisenberg; "Balance and unbalance in scientific progress" by Arne Tiselius; "Intuition and abstraction in scientific thinking" by Hideki Yukawa; and "Greece and the world" by Ioannis Theodorakopoulos.

Psychiatry and Public Affairs. Reports and symposia of the Group for the Advancement of Psychiatry. Aldine, Chicago, 1966. 479 pp. Illus. $8.95. Papers on the following topics: Psychiatry and Desegregation; Psychiatry and International Relations; Forceful Indoctrination; and The Threat of Nuclear War.

Solid state electronics used to be a thing of mystery

Then along came DigiBit—digital logic elements

DigiBit systems for programming, recording and analyzing data have been debunking solid state myths for more than four years. Psychologists, physiologists, toxicologists, researchers in a wide variety of disciplines, have helped dispel the mystery themselves through professional application of DigiBit systems. As applications grow, the old myths pale and disappear, replaced with expanded horizons in experimental parameters. Researchers dig deeper, obtain more accurate resolutions and let them perform experiments heretofore impractical (or impossible) due to the physical restrictions of electromechanical equipment.

There's an easy and conclusive way for you to make your own evaluation. BRS will conduct a three day introductory course for you and your colleagues on the principles and uses of DigiBit solid state systems. The course can be given at your location or at BRS headquarters in Beltsville, Md. For complete details address your inquiry to the BRS Training Director. There is no obligation for the course but scheduling does require adequate advance notice.
NOW... pipette, dilute, dispense
—in less than 15 seconds!

This new precision instrument, designed for repetitive pipetting, will quickly pay for itself—thanks to all the time it saves. It's reliable, foolproof, safe . . . far simpler to use than manual methods.

With the Auto-Spenser, you can pipette, add a reagent or diluent, and dispense—in 15 seconds or less! All you have to do is press levers. For reagent pickup, depress the first lever. For sample pickup, depress the second lever. For reagent/sample delivery, depress the third lever. And to rinse the system, depress the fourth lever. (This self-wash feature lets you change reagents in seconds.)

Other important features include easy-to-read micrometer-controlled pumps, a damage-proof liquid-handling system, plus automatic reagent buffer. The instrument is compact, rugged . . . requires no electrical power. Please ask us for details.

Sample Volume Range ——— 0 to 250 µl
Reagent Volume Range ——— 0 to 5.0 ml
Sampling Reproducibility ——— ±0.5 µl
Reagent Delivery Reproducibility ——— ±0.005 ml

Auto-Spenser, 9" x 9" x 6" deep ——— $195.00

INDEX TO ADVERTISERS
24 June 1966

Bausch & Lomb ——— 1773
Beckman Instruments Inc. 1656, 1678, 1687
Blickman, S., Inc. ——— 1779
BRS Electronics ——— 1797
Buchler Instruments, Inc. ——— 1678
Cary Instruments, Applied Physics Corp. ——— 1679
Chemical Rubber Co. ——— 1793
Coleman Instruments Corp. ——— 1780
Consolidated Electrodynamic ——— 1786
Control Data Corp. ——— 1774
Corning Glass Works ——— 1662, 1663
Daedalus ——— 1796
Dico Laboratories ——— 1799
Digital Equipment Corp. ——— 1672
E & M Instrument Co., Inc. ——— 1790
Electro-Mechanical Development Co. ——— 1788
Electronic Associates, Inc. ——— 1780
Easterling Angus Instrument Co., Inc. ——— 1657
Fisher & Porter Co. ——— 1781, 1784
Fisher Scientific Co. ——— 1684
Friden, Inc. ——— 1787
Gilford Instrument Laboratories, Inc. ——— 1688
Gilson Medical Electronics ——— 1698
Hamilton Co. ——— 1789
Harford Metal Products Inc. ——— 1792
Harvard Apparatus Co., Inc. ——— 1792
Hewlett-Packard Co., Sanborn Div. ——— 1666
Honeywell Apparatus, Controls Div. ——— 1785
Institute for Scientific Information ——— 1668
Instrumentation Associates, Inc. ——— 1775
Instrumentation Specialties Co., Inc. ——— 1771
International Equipment Co. ——— 1690, 1797
Isotopes, Inc. ——— 1660
Kahlenberg-Globe Equipment Co. ——— 1794
Klett Manufacturing Co., Inc. ——— 1771
Lab Cages, Inc. ——— 1661
Laboratory Construction Co. ——— 1771
Leeds & Northrup ——— 1684
LKB Instruments, Inc. ——— 1665
London Co. ——— 1682
Lourdes ——— 1686
Mallinckrodt Chemical Works ——— 1680, 1681
Matheson ——— 1689
McDonnell ——— 1801
Mettler Instrument Corp. ——— 1790
Midwestern Instruments ——— 1692
Millipore Filter Corp. ——— 1794
Naige Co., Inc. ——— 1772
Nega File Co. ——— 1792
New Brunswick Scientific Co., Inc. ——— 1667
Nuclear-Chicago Corp. ——— 1793
Orion Research Corp. ——— 1791
Pace Engineering Co. ——— 1795
Packard Instrument Co., Inc. ——— 1790
Paillard Inc. ——— 1799
Perkin-Elmer ——— 1691
Pharmacia Fine Chemicals Inc. ——— 1789
Philbrick Research ——— 1695
Philip & Bird, Inc. ——— 1785
Phoenix Precision Instrument Co. ——— 1795
Photovolt Corp. ——— 1794
Precision Scientific Co. ——— 1778
Professional Tape Co., Inc. ——— 1688
Radiochemical Centre ——— 1786
RCA Scientific Instruments ——— 1697
Reveco Inc. ——— 1790
Schleicher, Carl, & Schuell Co. ——— 1772
Scientific Glass Apparatus Co., Inc. ——— 1798
Shimadzu Seisakusho Ltd. ——— 1795
Siemens America Inc. ——— 1777
Sigma Chemical Co. ——— 1775
Technicon Chromatography Corp. ——— 1671
Thermolene Corp. ——— 1789
Thomas, Arthur H., Co. ——— 1802
Thomas, Charles C., Publisher ——— 1676
Torion Balance Co. ——— 1664
Trace lab ——— 1675
Unitrion Instrument Co. ——— 1677
Victoreen Instrument Co. ——— 1669
Whittaker Corp. ——— 1784
Wilkins-Anderson Co., Inc. ——— 1776
Williams & Wilkins Co. ——— 1776
Wilmet Castle Co. ——— 1683
Wortington Biochemical Corp. ——— 1799

Scientific Glass Apparatus Co., Inc.
Bloomfield, New Jersey

INDEX TO ADVERTISERS
24 June 1966

Bausch & Lomb ——— 1773
Beckman Instruments Inc. 1656, 1678, 1687
Blickman, S., Inc. ——— 1779
BRS Electronics ——— 1797
Buchler Instruments, Inc. ——— 1678
Cary Instruments, Applied Physics Corp. ——— 1679
Chemical Rubber Co. ——— 1793
Coleman Instruments Corp. ——— 1780
Consolidated Electrodynamic ——— 1786
Control Data Corp. ——— 1774
Corning Glass Works ——— 1662, 1663
Daedalus ——— 1796
Dico Laboratories ——— 1799
Digital Equipment Corp. ——— 1672
E & M Instrument Co., Inc. ——— 1790
Electro-Mechanical Development Co. ——— 1788
Electronic Associates, Inc. ——— 1780
Easterling Angus Instrument Co., Inc. ——— 1657
Fisher & Porter Co. ——— 1781, 1784
Fisher Scientific Co. ——— 1684
Friden, Inc. ——— 1787
Gilford Instrument Laboratories, Inc. ——— 1688
Gilson Medical Electronics ——— 1698
Hamilton Co. ——— 1789
Harford Metal Products Inc. ——— 1792
Harvard Apparatus Co., Inc. ——— 1792
Hewlett-Packard Co., Sanborn Div. ——— 1666
Honeywell Apparatus, Controls Div. ——— 1785
Institute for Scientific Information ——— 1668
Instrumentation Associates, Inc. ——— 1775
Instrumentation Specialties Co., Inc. ——— 1771
International Equipment Co. ——— 1690, 1797
Isotopes, Inc. ——— 1660
Kahlenberg-Globe Equipment Co. ——— 1794
Klett Manufacturing Co., Inc. ——— 1771
Lab Cages, Inc. ——— 1661
Laboratory Construction Co. ——— 1771
Leeds & Northrup ——— 1684
LKB Instruments, Inc. ——— 1665
London Co. ——— 1682
Lourdes ——— 1686
Mallinckrodt Chemical Works ——— 1680, 1681
Matheson ——— 1689
McDonnell ——— 1801
Mettler Instrument Corp. ——— 1790
Midwestern Instruments ——— 1692
Millipore Filter Corp. ——— 1794
Naige Co., Inc. ——— 1772
Nega File Co. ——— 1792
New Brunswick Scientific Co., Inc. ——— 1667
Nuclear-Chicago Corp. ——— 1793
Orion Research Corp. ——— 1791
Pace Engineering Co. ——— 1795
Packard Instrument Co., Inc. ——— 1790
Paillard Inc. ——— 1799
Perkin-Elmer ——— 1691
Pharmacia Fine Chemicals Inc. ——— 1789
Philbrick Research ——— 1695
Philip & Bird, Inc. ——— 1785
Phoenix Precision Instrument Co. ——— 1795
Photovolt Corp. ——— 1794
Precision Scientific Co. ——— 1778
Professional Tape Co., Inc. ——— 1688
Radiochemical Centre ——— 1786
RCA Scientific Instruments ——— 1697
Reveco Inc. ——— 1790
Schleicher, Carl, & Schuell Co. ——— 1772
Scientific Glass Apparatus Co., Inc. ——— 1798
Shimadzu Seisakusho Ltd. ——— 1795
Siemens America Inc. ——— 1777
Sigma Chemical Co. ——— 1775
Technicon Chromatography Corp. ——— 1671
Thermolene Corp. ——— 1789
Thomas, Arthur H., Co. ——— 1802
Thomas, Charles C., Publisher ——— 1676
Torion Balance Co. ——— 1664
Trace lab ——— 1675
Unitrion Instrument Co. ——— 1677
Victoreen Instrument Co. ——— 1669
Whittaker Corp. ——— 1784
Wilkins-Anderson Co., Inc. ——— 1776
Williams & Wilkins Co. ——— 1776
Wilmet Castle Co. ——— 1683
Wortington Biochemical Corp. ——— 1799

SCIENCE, VOL. 152
<table>
<thead>
<tr>
<th>No.</th>
<th>Date of Issue</th>
<th>Pages</th>
<th>No.</th>
<th>Date of Issue</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3718</td>
<td>1 April</td>
<td>1–116</td>
<td>3725</td>
<td>20 May</td>
<td>1003–1134</td>
</tr>
<tr>
<td>3719</td>
<td>8 April</td>
<td>117–276</td>
<td>3726</td>
<td>27 May</td>
<td>1135–1318</td>
</tr>
<tr>
<td>3720</td>
<td>15 April</td>
<td>277–400</td>
<td>3727</td>
<td>3 June</td>
<td>1319–1418</td>
</tr>
<tr>
<td>3721</td>
<td>22 April</td>
<td>401–580</td>
<td>3728</td>
<td>10 June</td>
<td>1419–1554</td>
</tr>
<tr>
<td>3722</td>
<td>29 April</td>
<td>581–688</td>
<td>3729</td>
<td>17 June</td>
<td>1555–1654</td>
</tr>
<tr>
<td>3723</td>
<td>6 May</td>
<td>689–812</td>
<td>3730</td>
<td>24 June</td>
<td>1655–1802</td>
</tr>
<tr>
<td>3724</td>
<td>13 May</td>
<td>813–1002</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Names of authors of books reviewed are printed in SMALL CAPITALS.
Changing Chemistry

Chloroquine: Chromium-51

Chemical releases at high altitudes, N. W. Rosenberg, 1017

Chromosomes, Chubb, Circadian

Clark, CLARK, Clement, R.M.

Chromosomes, Chromosomes,

Cilia

Clark, CLARK, Clement, R.M.

CLARK, R. C., et al.

Cilia, Lasagna, 529

Ciliary beat frequency, T. D. See

Clinical pharmacology, present status and future development (meeting report), L. Lasagna, 388

Clinical roentgenology of collagen dis

Cooper, G., See Juva, K., et al.

INDEX TO VOLUME 152

Cooper, H. L., and A. D. Rubin: Synthesis of nonribosomal RNA by lymphocytes: a response to phytohemagglutinin treatmen

Core, E. L.: book review of A flora of northeastern Minnesota, 943

coroller, D. See Coroller, D. R.

correlation of archeological and palynological data, A. J. Jelinek, 1507

correspondence of Henry Oldenburg, The, A. R. Hall, R. H. (Eds.), book review by R. S. Westfall, 912

Cosmic ray sources, galactic and extra-galactic, E. T. Byram et al., 66

cost of research (editorial), D. Wolfe, 455

cost-research differential (letter), M. Fry, 1694

cotner, N., et al.: Light-chain heterogeneity of cold agglutinins, 1520

cottam, G. See Vogl, R. J., et al.

cotterill, R. M., et al. (Eds.), Lattice defects in quenched metals, book review of, 339

courtship in spiders without prior sperm induction, J. S. Roofer, 543

cover pictures: Alaskan island (15 Apr.); aphids (1 Apr.); dolphins (1 Apr.); bladestone (10 June); Columbian pendant (19 May); fossil bra
chipoi (29 Apr.); grasshopper eggs (1 Apr.); ground squirrel (22 May); Marble Canyon damsite (17 June); Maya mural (27 May); pentagonal virus ag
gregation (3 June); wolf spider (22 Apr.)

cox, D. J.: Sedimentation of an initially skewed boundary, 359

cranberg, L.: AAAS election system (letter), 156

crandall, L. S., A zoo man's notebook, book review of, 1734

crassley, W. A.: book review of Screening methods in plant physiology, 1231

crewe, F. A. E., The foundations of genetics, book review of, 1733

crop destruction in Vietnam (letter), J. Mayer, 291
crustaceans, W. SCHMITT, book review of L. W. Scattergood, 914

Crystal structure of umangite, CufSe2, N. Morimoto and K. Koto, 345

cubic carbides, W. S. Williams, 34

culbert, T. P.: book review of Archaeology of southern Mesopotamia, 1230

curl, H. C., Jr.: book review of The plankton of the sea, 1365

current problems in particle physics, E. M. McMillan, 1216

current topics in thyroid research, C. Cassaro and M. Andreoli (Eds.), book review by H. Rasmussen, 748

curry, H. B.: book review of Enumerability, decidability, and computability, 953

curry, R. R. See Weaver, H., et al.
cutaneous water loss in reptiles, P. J. Bentley and K. Schmidt, Nielsen, 1523

cyanide intoxication: protection with oxygen, J. L. Way et al., 210

cytocinical localization of lactate dehydroge
nase in muscular dystrophy of the mouse, H. D. Fahimi and P. Roy, 1761
INDEX TO VOLUME 152

R. D. TURNER, book review by J. J. Gonor, 1614
Surveyor I: preliminary results, L. D. Jaffe, chairman, Surveyor Scientific Evaluation and Analysis Team
Survival of mammals breathing organic liquids and equilibrated with oxygen at atmospheric pressure, L. C. Clark, Jr., and F. Gollan, 1755
Sussman, A. N., and Paratz, S. A.
Sutthers, R. A.: Optomotor responses by echolocating bats, 1102
Swatin, G. See Negishi, K.
Swanson, J. R.
Sweet, A. See Schweiger, J.
Sympathetic
Synopsis
Taeuber, R. D.
Tauber, A. See Altschul, F.
Taylor, W. D.
Tazula, G. See Tazula, G.
Thompson, J. D.
Thompson, P. E., and D. S. English: Multiplicity of hemoglobin in the genus Chironomus (tendipes), 75
Thorburn, G. D. See Stacy, B. D.
Thordirke, L., Michael Scoi, book review of, 1050
Thorne, D. See Terry, D. E.
Thirty-three years of development, H. MAIER, book review by R. Longabaugh, 1050
Tibor, D. See Richards, H. G.
Thornton, R. N.: book review of Foundations of solid mechanics, 64
Thyrocalcitonin: cytological localization by immunofluorescence, G. K. Hargis et al., 1397
Ticks of the genus Ixodes in Africa, D. R. ARTHUR, book review by H. Hoogstraal, 750
Titani, K., et al.: Immunoglobulin structural variation in the sequence of Bence Jones proteins, 1513
Tomlinson, P. B. See Zimmermann, M. H.
Toor, A. See Grader, R. J., et al.
Toplin, I., and G. Schidlovsky: Partial purification of mammalian virus of the EB-3 cell line derived from a Burkitt lymphoma, 1084
Toth, B., and P. Shubik: Mammary tumor induction by isonicotinic acid hydrazide, 1376
Touch receptor of venus flytrap, Dionaea muscipula, J. R. D’Palm et al., 535
Tough old boys at M.I.T. (letter), E. Hodgings, 1458
Toward a theory of instruction, J. S. Bruner, book review by W. Kessen, 193
Trace element partition coefficient in ichthyic crystals, H. Nagasawa, 767
Tracers determine movement of soil moisture and vegetation, U. Zimmermann et al., 346
Training of an astronomer, The, J. B. Irwin, 1597
Traité de tectonique des 沮les, book review by M. P. Billings, 1363
Transformation of auxotrophic mutants of group H streptococci, C. G. Leonard et al., 353
Transforming the National Science Foundation (editorial), D. Wolfe, 869
Transmigration of lymph nodes by tumor cells, B. Fisher and R. Fisher, 1397
Treatise on artichoke, A. L. PARs, book review by H. H. Denman, 634
Tree shrews: unique reproductive mechanics of a systemic importance, R. D. Martin, 1402
Trilobed norepinephrine: release from brain slices by electrical stimulation, R. I. Bolden and J. R. Pinin, 1630
Truman, E. R.: Bivalve mollusks: fluid dynamics of burrowing, 523
Tsukada, Y., and A. Lajtha: United States-Japan Committee on Scientific Cooperation conference (meeting report), 801
Tubocurarine chloride: effects on insects, J. R. Larsen et al., 225
Tuck, J. L.: book review of Elementary plasma physics, 955
Turkevich, J., and Y. Fujita: Methyl radicals: preparation and stabilization, 1619
Turner, A.: Teaching methods in pharmacology, book review of, 1231
Turner, R. M. See Hastings, J. R.
Tuttle, O. F.: book review of Geology of granite, 496

U
U, Raymond. See Mittler, S.
Uhlmann, D. R. See Jackson, K. A.
Ulrich, R. See Vernon, W.
Uncertainty in archaeological photographs: automatic analysis, R. Moore et al., 1509
Ultrasound (meeting report), W. P. Mason, 1287
Underfriend, S.: Formation of hydroxyproline in collagen, 1335
Ungar, F. See Dorgman, R.
Unit responses from commissural fibers of optic lobes of, R. F. Mark and T. M. Davidson, 797
United States-Japan Committee on Scientific Cooperation: neurochemistry conference (meeting report), Y. Tsukada and A. Lajtha, 801
University computer centers (letter), A. Ralston, 591
University in transition, The, J. A. Perkins, book review by H. W. Stok, 56
Upper atmosphere and ionsphere of Mars, T. M. Donahue, 763
Urban design, P. D. Spreeugen, book review by J. C. Harv, 911
Urease activity in blue-green algae, D. S. Berns et al., 1077
Uric acid dihydrate: crystallography and identification, R. Shirley, 1512
Uric acid, uric acid dihydrate, and urates in urinary calculi, ancient and modern, K. Lonsdale and P. Mason, 1511
Usinger, R. L., and W. I. Follett: Copyright bill: taxonomic works (letter), 291
Uzman, B. G. See Milman, G., et al. and Morgan, R. S.
Uzumasa, Y., Chemical investigations of hot springs in Japan, book review of, 635

V
van Overbeeck, J.: Plant hormones and regulators, 721
Vaska, L.: Reversible combination of carbon monoxide with a synthetic oxygen carrier complex, 769
Vegetational continuum, R. J. Vogl et al., 346
Velikonja, L.: book review of A prologue to population geography, 929
Vernon, W.: The exclusive "graduate" course in advanced-degree programs (letter), 700
Vernon, W., and R. Ulrich: Classical con-