METEORITES: STRUCTURAL EVIDENCE FOR THE PROTOCEREBELLUM FROM THE SOLOMON ISLANDS; G. A. Schneidman; 970

ELECTRON MICROSCOPY: ATTACHMENT SITES BETWEEN CONNECTIVE TISSUE CELLS; R. Ross and T. K. Greenlee; 997

INTRACRANIAL MOBILITY IN THE COELACANTH; K. S. Thomson; 999

BIPPERIDYL MUSTARD, A NEW OBESIFYING AGENT IN THE MOUSE; R. J. Ruiman, F. S. Lewis, W. D. Bloomer; 1000

INCREASED CARDIOVASCULAR REACTIVITY TO ANGIOTENSIN CAUSED BY RENIN; G. M. C. Masson et al.; 1002

IMMUNIZATION OF NORMAL MOUSE SPLEEN CELL SUSPENSIONS IN VITRO; R. I. Mishell and R. W. Dutton; 1004

PLASMODIUM VIVAX TRANSMITTED FROM MAN TO MONKEY TO MAN; M. D. Young; J. A. Porter, J., C. M. Johnson; 1006

ANTIGENIC HETERGENEITY OF HUMAN IMMUNOGLOBULIN A PROTEINS; W. D. Terry and M. S. Robert; 1007

VITAMIN C-INDUCED INCREASE OF DERMATAN SULFATE IN CULTURED HURLER'S FIBROBLASTS; I. A. Schafer et al.; 1008

SURFACE AREA OF HUMAN ERYTHROCYTE LIPIDS: REINVESTIGATION OF EXPERIMENTS ON PLASMA MEMBRANE; R. S. Bar, D. W. Deamer, D. G. Cornew; 1010

EFFECT OF SUGARS ON TRANSPORT OF ALANINE IN INTESTINE; R. A. Chez, S. G. Schultz, P. F. Curran; 1012

GLUCOSE-6-PHOSPHATE DEHYDROGENASE: HOMOLOGOUS MOLECULES IN DEER MOUSE AND MAN; C. R. Shaw; 1013

HEXOSE-6-PHOSPHATE DEHYDROGENASE FOUND IN HUMAN LIVER; S. Ohno et al.; 1015

AMNESIA OR REVERSAL OF FORGETTING BY ANTICHOLINESTERASE, DEPENDING SIMPLY ON TIME OF INJECTION; J. A. Deutsch and S. F. Liebowitz; 1017

6-HYDROXYLATION: EFFECT ON THE PSYCHOTROPIC POTENCY OF TRYPTAMINES; R. G. Taborsky, P. Delvigs, I. H. Page; 1018

CONTROL OF SOMATOSENSORY INPUT BY CEREBRAL CORTEX; R. J. Adkins, R. W. Morse, A. L. Towe; 1020

TECHNICAL COMMENTS: HORMONES AS ALLOSTERIC EFFECTORS; M. A. Venis; SIGNAL VERSUS NOISE IN THE EVOKED POTENTIAL; N. W. Perry; 1022

Atherosclerosis: D. Kritchevsky and R. Paolet; Earthquake Prediction: J. Oliver; Pediatric Outpatient Department: R. W. Olinsted; 1023

The structure of the meteorite, which has 16 percent nickel (by weight) is intermediate between a fine octahedral and an ataxite. The large kamacite plates make up the well-defined Widmanstätten pattern typical of the octahedrites. The interior areas between the kamacite plates of the major pattern are regions of transformed taenite (plessite) which contain a micro-Widmanstätten pattern sometimes found in the ataxites. This micropattern formed late in the meteorite's cooling history (about 35). See pages 975 and 976. [J. I. Gold-
Editor's Summary

This copy is for your personal, non-commercial use only.

Article Tools
Visit the online version of this article to access the personalization and article tools:
http://science.sciencemag.org/content/153/3739

Permissions
Obtain information about reproducing this article:
http://www.sciencemag.org/about/permissions.dtl