Generation and Detection of Coherent Elastic Waves at 114,000 Mc/sec:
J. Ilukor and E. H. Jacobsen ... 1113

Brassica campestris L.: Floral Induction by One Long Day: D. J. C. Friend and V. A. Nelson 1115

Differentiation in vitro: Effects of Sephadex Fractions of Chick Embryo Extract:
H. G. Coon and R. D. Cahn .. 1116

Polysomes Extracted from Escherichia coli by Freeze-Thaw-Lysozyme Lysis:
E. Z. Ron, R. E. Kohler, B. D. Davis 1119

Inorganic Pyrophosphate: Formation in Bacterial Photophosphorylation:
H. Baltschewsky et al. ... 1120

Heat-Labile Serum Factor Required for Immunofluorescence of Polyoma Tumor Antigens: K. K. Takemoto, R. A. Malmgren, K. Habel 1122

Mucopolysaccharide from Patients with Cystic Fibrosis of the Pancreas:
C. U. Lowe et al. ... 1124

Nucleic Acid Guanine: Reaction with the Carcinogen N-Acetoxy-2-Acetylamino-fluorene: E. C. Miller, U. Juhl, J. A. Miller 1125

Diabetes, a New Mutation in the Mouse: K. P. Hummel, M. M. Dickie, D. L. Coleman .. 1127

Plasma Replacement for in vitro Culture of Plasmodium knowlesi: Q. M. Geiman, W. A. Siddiqui, J. V. Schnell 1129

Methylene-C14-Dioxyphenyl Compounds: Metabolism in Relation to Their Synergistic Action: J. E. Casida et al. 1130

Occurrence of Isoprenoid Fatty Acids in the Green River Shale: G. Eglinton et al. ... 1133

Plasma Kinins and Cortisol: A Possible Explanation of the Anti-Inflammatory Action of Cortisol: M. J. Cline and K. L. Melmon 1135

Odor Discrimination in Pigeons: W. W. Henton, J. C. Smith, D. Tucker 1138

Anolis carolinensis: Effects of Feeding on Reaction to Aposematic Prey:
O. J. Sexton, C. Hoger, E. Ortieb 1140

MEETINGS

Bioluminescence: F. H. Johnson ... 1141

COVER

Developing tylosis in the wood of Eucalyptus obliqua. In general, a tylosis is formed by growth of a portion of a cell wall either into the lumen of a neighboring tracheary element or into an intercellular space, such as the duct of a resin canal. Such cellular outgrowths tend to fill the adjacent space, thus obstructing the movement of solutions (preservatives, pulping liquor) through the wood (Scale: about 1 cm = 1 micron). See page 1068. [R. C. Foster, Forest Products Laboratory, C.S.I.R.O., Melbourne, Australia]
Editor's Summary

This copy is for your personal, non-commercial use only.

Article Tools Visit the online version of this article to access the personalization and article tools:
http://science.sciencemag.org/content/153/3740

Permissions Obtain information about reproducing this article:
http://www.sciencemag.org/about/permissions.dtl