Peptide analysis
in seven hours

The actual peptide analysis shown above used to take days to complete—with far less accuracy. This one was done in seven hours... on the Beckman Model 120C Amino Acid Analyzer.

How? A new methodology reported by Benson, Jones, Cormick and Patterson is the answer.

Using Beckman Spherical Resins in the Model 120C, these investigators were able to make chromatographic analyses of tryptic hydrolyzates of hemoglobin, lysozyme, and ribonuclease faster—and with better peak resolution—than ever before.

Of course, the 120C is still the premier instrument for analyzing amino acids, too. And still further uses for this versatile tool are now on the way. In the meantime, if you’re looking for faster, better analysis of peptides and amino acids, we’ll be happy to send you complete details of the Model 120C together with a reprint of the peptides paper mentioned above. Just write for Data File 120C-5.
Recently, hematoporphyrin derivative (H.D.) has been reported to be an important agent in tumor detection. By utilizing H.D. and a proper activating and viewing system, one can detect malignancy by fluorescence. Hematoporphyrin tends to accumulate in tumors (1) and its red fluorescence can be utilized in the delineation of neoplastic tissue (2). Lipson, et al. have demonstrated that with a single intravenous dose of 0.05 mg/gm body weight of H.D., the tumor exhibited good differentiation within 3 hours after administration. They further report that the amount of H.D. required is well within the range of safety for the body (3).

NBCo offers stat service on H.D. Phone collect 216-662-0212 (USA only). NBCo will process your order and guarantee shipment within 60 minutes of your call; one-day delivery anywhere in the continental USA, 80 hours anywhere in the world. Send for our free catalog containing more than 3000 items.

PRICE SCHEDULE:

<table>
<thead>
<tr>
<th>Gram Bottle Size</th>
<th>gm Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 gram bottle</td>
<td>$4.25</td>
</tr>
<tr>
<td>10 gram bottle</td>
<td>$4.50</td>
</tr>
<tr>
<td>5 gram bottle</td>
<td>$4.75</td>
</tr>
<tr>
<td>1 gram bottle</td>
<td>$4.90</td>
</tr>
</tbody>
</table>

WASHINGTON, D. C. • 133rd AAAS
Order Your General Program

It provides complete, detailed information about all the sessions and symposia scheduled, the Annual Exposition of Science and Industry, and the Science Theatre.

Program Highlights

Moving Frontiers of Science: Lynn White on The Historical Roots of Our Ecologic Crisis; Th. Dobzhansky on the Changing Man; Thomas F. Malone on Weather Modification; D. S. Greenberg on Problems of Securing Constructive Legislation.

Interdisciplinary Symposia: Science in International Perspective with P. M. S. Blackett, Sir Lawrence Bragg, Victor F. Weisskopf; Political Aspects of the Population Explosion; Scientific Exchange and Use of Information; Systems of Pollution Control.

AAAS Committees: Committee on Arid Lands symposium on Migration to Arid Lands; Committee on Science in the Promotion of Human Welfare symposium on Utility of the Construct of Race; Commission on Science Education.

Sections and Societies: The 20 AAAS Sections and some 90 participating societies are scheduling specialized symposia and papers.

AAAS Science Theatre: The latest foreign and domestic films.

Exhibits: The Annual Exposition of Science and Industry is in the Exhibit Halls of the Sheraton-Park Hotel, AAAS Headquarters.

Advance Registration: By registering in advance, you avoid delay at the Registration Center on arrival; you receive the General Program in time to plan your dates at the meeting; and your name is posted in the Visible Directory of Registrants when the meeting opens. Use the coupon below.

AAAS
1515 Massachusetts Ave., NW
Washington, D.C. 20005

Date of Application

(Check 1a or 1b)
1a. □—Enclosed is $5 Advance Registration Fee. This brings me the General Program and a Convention Badge.
1b. □—Enclosed is $3 for the General Program. (If I attend the meeting, the Badge, which I need to obtain the privileges of the meeting, will cost me $2 more.)

2. FULL NAME (Dr., Miss, etc.)

(Print please or typewrite)

(Last)

(First)

(Initial)

3. OFFICE □ OR HOME □ ADDRESS

(For receipt of General Program)

CITY .. STATE ZIP CODE

4. ACADEMIC, PROFESSIONAL, OR BUSINESS CONNECTION

..

5. FIELD OF INTEREST

..

6. CONVENTION ADDRESS

(May be added later, after arrival)

Please mail this coupon and your check or money order for the total amount to the AAAS in Washington, D.C. (address as shown).
MEETING • 26-31 DECEMBER

Reserve Your Hotel Room

Make sure you have the accommodations you prefer. The AAAS headquarters is the Sheraton-Park; the other hotels are co-headquarters.

The hotel sleeping accommodations are for your convenience in making your room reservation in Washington. Please use the coupon below and send it directly to the AAAS Housing Bureau in Washington. Give a definite date and estimated hour of arrival, and also your probable date of departure. The Housing Bureau will make the assignment and promptly send you a confirmation.

For more details on all of the above facilities and services, and for a list of the headquarters of each participating society and section, see the 22 July issue of Science, page 437.

<table>
<thead>
<tr>
<th>Hotel</th>
<th>Single</th>
<th>Double</th>
<th>Twin</th>
<th>Suites†</th>
<th>Parking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheraton-Park (1260)</td>
<td>$12-14</td>
<td>$16-18</td>
<td>$16-18</td>
<td>$30</td>
<td>Free for registered guests</td>
</tr>
<tr>
<td>Motor Inn (214)</td>
<td>15</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoreham (900)</td>
<td>12-14</td>
<td>16-18</td>
<td>16-18</td>
<td>35</td>
<td>$2</td>
</tr>
<tr>
<td>Motor Inn (100)</td>
<td>15</td>
<td>19</td>
<td>19</td>
<td></td>
<td>Free for registered guests</td>
</tr>
<tr>
<td>Washington Hilton (1200)</td>
<td>14-16</td>
<td>18-20</td>
<td>18-20</td>
<td>50-75</td>
<td>$2</td>
</tr>
</tbody>
</table>

*All rooms are subject to a 4% District transient room tax.
†One-bedroom parlor suites; rates for larger suites available upon request.

There is no charge for children at any of the hotels.

AAAS Housing Bureau
1616 K Street, NW
Washington, D.C. 20006

Please reserve the following accommodations for the 133rd Meeting of the AAAS in Washington, D.C., 26-31 December 1966

First Choice of Hotel

Second Choice

Third Choice

Type of room: Single □ Double □ Double, twin beds □ Suite □ Rate desired □ Maximum rate

Number in party □ Sharing this room will be:

(List name and address of each person, including yourself. Attach list if space is insufficient.)

DATE: ARRIVAL □ A.M. □ P.M. □ DEPARTURE □ A.M. □ P.M.
(These must be indicated—add approximate hour, A.M. or P.M.)

NAME □ (Individual requesting reservation)

ADDRESS □ (Street) □ (City and State) □ (Zip Code)

Mail this coupon now to the AAAS Housing Bureau. Rooms will be assigned and confirmed in order of receipt of reservation.

30 SEPTEMBER 1966

1593
Since the sodium doublet falls at the most compressed point of the spectrum, isn't it impossible to split it with a single prism spectrophotometer? Indeed it is, with one exception—the Zeiss Spectrophotometer PMQ II. Above is an actual PMQ II resolution of the most demanding doublet. Distance between peaks is approximately 6 Å.

You're looking at an impossibility

It goes without saying that the Zeiss Spectrophotometer PMQ II (185 μ-2500 μ range) has greater resolving power than any other single prism instrument. The "impossible" proof is at the top of this page.

Here are three other impossibilities made possible by the PMQ II: (1) it reproduces any slit setting within .2 microns, (2) its true wavelength setting remains constant at all times, (3) it changes over from one to any other type of measurement (flame, fluorescence, chromatogram, absorption) in approximately 30 seconds—much faster than other spectrophotometers.

For complete information, write Carl Zeiss Inc., 444 Fifth Ave., New York, N.Y. 10018. Complete service facilities available.
and more sensible to use in wartime because it requires less manpower." As a consequence of the suppression of the bulletin, the head of Brownlee's department, Professor Theodore William Schultz, resigned and joined the faculty of the University of Chicago, and, by March, 19 other faculty members had left Iowa College in protest. One of them, W. W. Wilcox, actually found refuge at the University of Wisconsin, where much of the work establishing the nutritious qualities of oleomargarine had been carried out by C. A. Elvehjem and his co-workers. In an article entitled "Vegetable fats equal butterfat in mixed rations," R. K. Boutwell, R. P. Geyer, C. A. Elvehjem, and E. B. Hart concluded, on the basis of their own research, that "butterfat is superior to vegetable fats when young animals are restricted to a diet made up almost entirely of milk, but not when the diet includes a mixture of such carbohydrates as starch, sucrose, and dextrose. These are supplied by such common foods as cereals, potatoes, sugar, and molasses" ("What's new in farm science." Bull 461, Ann. Rept. Agr. Exp. Sta., Univ. Wis., December 1943, p. 45). I sincerely regret the mistake, which might seem to impugn the distinguished work of the Wisconsin group. I further deplore that the same error was printed in my book Science and Ethical Values (Univ. of North Carolina Press, Chapel Hill, 1965, p. 92), in a more extended form of the essay printed in Science. To confuse the rescuer with the drowning man or the bystander with the thug may not be uncommon, but it is truly regrettable.

BENTLEY GLASS

State University of New York at Stony Brook 11790

"Bootlegging" in Research

Although Greenberg is perhaps strictly correct in stating in his article on "bootlegging" in research (News and Comment, 19 Aug., p. 848) that this problem has not been the subject of any published study or conference, it has, nevertheless, been aired and the discussion recorded. At the 12th National Conference on the Administration of Research, University of Denver, 1958, a participant asked how the willingness of research directors to tolerate "bootleg research" accorded with managerial efforts to program and direct research activities toward major objectives of the laboratory and parent organizations. The ensuing discussion revealed two opposing camps, one for "legalizing" and encouraging such efforts by specific allocation of discretionary budgeted funds for extracurricular exploratory studies, the other for excluding any effort not clearly a part of the approved program, on the basis that any "undercover" work is objectionable. The issue was not then and has not been settled but one should take note that there are two kinds of "bootlegging." One involves undercover or diversionary effort and the other, as Greenberg points out, involves clouding the real purposes of approved programs. Perhaps the latter is less harmful, particularly if the effort is not really a departure from the commitments of management and the researcher.

LESLIE B. WILLIAMS
Coordinator of Research,
University of Delaware, Newark

Calcium and Fluoride

D. M. Hajimarkos discussed the high content of fluoride in fish flour (Letters, 17 June) and called for studies to be undertaken regarding the effect of ingesting fish flour on dental caries and the degree of mottled enamel that might develop in children's teeth. In this letter he has omitted one important paragraph which is found in his reference report [J. Pediat. 65, 782 (1964)] as follows:

However, since the calcium content of fish flour is appreciable, it should be pointed out that experimental evidence has shown that absorption of fluoride from the intestinal tract is considerably depressed by the presence of high amounts of calcium.

My interest is merely to bring out this information, so that any judgment rendered by readers will also be based on this statement.

ROBERT F. ARMEIT
21 Trowbridge Road,
Morris Plains, New Jersey 07950
Outcast glass is in at Western Electric

Glass has several qualities that make it a choice encapsulant for electronic components. But to seal glass around a component, the glass must be heated to temperatures well above 600°C. Western Electric found that long exposure to these temperatures would damage sensitive components. In fact, ordinary glass required so much heat, applied for so long a time, that both damage and delay occurred in the sealing process.

Glassmakers have long struggled to keep glass free of contaminants, especially the oxides of iron.

However, manufacturing engineers at Western Electric’s North Carolina works discovered that specific quantities of FeO in glass cause it to absorb infrared energy very readily.

Specifically, glass doped with FeO rapidly absorbs energy from infrared waves in the region of 1.2 microns. This region corresponds to the output of a small, powerful infrared heater developed at Western Electric’s Engineering Research Center. When adapted to the sealing process, the heater’s ellipsoidal reflector concentrates energy from a quartz iodine lamp at one focus onto the seal area at the other focus.

Today, Western Electric uses FeO-doped glass tubes, sealed by infrared heating, to protect diodes and ferrule switch contacts. A superior seal is made around the component’s wire leads — using less energy and consequently causing less damage to components. This is another way Western Electric helps its Bell System teammates to continue to bring you the world’s most dependable telephone service at low cost.
The new AESI MS10 MASS SPECTROMETER is now even more versatile and still ticketed well within low-budget reach $5290

The new model MS10, grown in capability but not in size or cost, is even more versatile than its predecessor. Technical improvements (listed opposite) endow it with the ability to handle an even wider range of spectrometric chores, often to the extent of freeing its larger, more elaborate counterparts for the more sophisticated assignments.

So much so, in fact, that many laboratories already possessing a large mass spectrometer will want to acquire one in the "second car" philosophy. Pair an ion pump with it, mount on a cart and you've got a mobile mass spectrometer you can wheel into action anywhere.

Which is to say that the new MS10 doesn't qualify as a first line mass spectrometer in any man's laboratory, as a glance at these improved specifications will attest:

The MS10 is a 180° magnetic deflection type instrument for high sensitivity dial-indicated analyses of gases or vapors. It is compact and portable. It will monitor a single peak or scan spectra manually or automatically scan m/e 12-45 or 36-200 repeatable without attention ad infinitum. It will run off any existing vacuum system. It has an output for recording spectra on any 10 MV recorder. It is so easy to operate that a student can quickly learn how and so rugged that it thrives on inexpert handling.

The analytical chemists making high-accuracy gas analyses with small samples

Biologists, Botanists, Biochemists using stable isotopes (6H2, 14N, 18O) as tracers

Chemical engineers needing purity determinations, process monitoring

Combustion engineers investigating flame structure, combustion products, precipitation

Electrical engineers concerned with device encapsulation, vacuum tube and lamp studies, insulation

Geologists and mineralogists, for potassium-argon age determination and petrology

Lecturers and teachers of electronics, electron physics, measurements, and all subjects in which mass spectrometry is a current or future technique

Metallurgists wanting p.p.m. level gas-in-metal analysis

Physical Chemists and physicists studying reaction rates, irradiation products, bond energies

Vacuum engineers and technologists for monitoring, leak detection, partial pressure analysis

Our booklet "Questions and Answers on the MS10" will tell you all about this remarkable instrument. Gladly sent on request.

Mass Range 2 to 200
Resolution 100 (10% valley definition)
Sensitivity 5 x 10^-6 Torr
Detection Limit 10 parts per million
Scan Speeds 3.5 or 13 minutes per spectrum

A complete complement of accessories designed exclusively for the MS10 is available, including vacuum systems, sampling systems and ion gauges.

The AEI MS10 MASS SPECTROMETER is marketed and serviced in the U.S.A. by PICKER NUCLEAR

PICKER X-RAY CORPORATION
White Plains, N.Y.

VOL. 153

1598
Every customer gets this service, free

We want every one of our customers to get the most from his Packard Gas Chromatograph. No instruction manual—not even the very complete one we supply—can tell him everything. That's why every gas chromatograph we deliver is installed by a trained specialist who then explains its features. ■ Features such as the easily-removable column/detector assembly that permits column changes outside the heated oven; electronically programmed temperature control; separate heat controls at inlet, outlet and detector; interchangeable detectors, and the water-cooled oven. ■ Dual-column Packard Gas Chromatographs are ready to use for simultaneous analysis of different samples... or for stream splitting with different types of detectors to give general and specific responses from the same sample. Modular design of all systems allows choice of detector and expansion from single to dual channel, or isothermal to programmed temperature operation. For complete information ask your Packard Sales Engineer for Bulletin 105U, or write to Packard Instrument Company, Inc., 2200 Warrenville Road, Downers Grove, Illinois 60515.
products of major metals; metallurgical by-products and co-products of the minor metals; milling by-products and co-products of the minor metals; individually mined minor metals; and minor metals without geologic limitations.

The chapter on "Supply conditions" shows a real understanding of the problems of minor metals, although it would have been still better if specific examples had been used to show how intertwined the milling and metallurgical recoveries of the minor metals are with the mixed mineral ores. The nature of these problems explains why many large firms already in nonferrous major metals or chemicals diversify into minor metals, and, conversely, why few new firms have successfully broken into the business. Other chapters covering "Location and scale of production," "Firms producing minor metals," "Sources and competition," and "strength of competition," supported by 20 tables, seven illustrations, and four appendices, round out the book.

The volume has excellent typography and editing. (The only error I found was the transposition of tables 1 and 2 on pp. 4 and 5.) Although in some places (pp. 13–31 in particular) the book reads like the graduate thesis it was, it is otherwise professional in every sense and will make rewarding reading not only for mineral and metal economists but also for marketing and planning people and, of course, exploration geologists.

FREDRICK C. KRUGER

International Minerals and Chemical Corporation,
Skokie, Illinois

Articles in Botany

Volume 2 of Advances in Botanical Research (Academic Press, New York, 1965. 394 pp., illus. $12), edited by R. D. Preston, continues a series of topical review papers generous in length and in number and quality of illustrations. It contains six articles: "Some phyletic implications of flagellar structure in plants" by Irene Manton; "Fundamental problems in numerical taxonomy" by W. T. Williams and M. B. Dale; "Ultrastructure of the wall in growing cells and its relation to the direction of growth" by P. A. Roelfsen; "The protein component of primary cell walls" by D. T. A. Lamport; "Embryology in relation to physiology and genetics" by P. Maheshwari and N. S. Rangaswamy; and "The soft rot fungi: their mode of action and significance in the degradation of wood" by John Levy.

These articles will be of interest and importance to workers in the pertinent areas; the nature of the coverage of course varies greatly among the topics and authors. Roelfsen's and Maheshwari and Rangaswamy's extensive articles survey in detail rather large bodies of literature, the former bringing the author's point of view up to date since the appearance of his 1959 monograph on the same subject, the latter reviewing in historical perspective an entire area, but with emphasis on the tissue-culture approach of the last couple of decades. Lamport's article on cell-wall protein is long not because of extensiveness of its subject but through inclusion of much previously unpublished tabular and graphic material, and liberal indulgence in discourse and speculation (including passages and quotations justifying the merits of speculation!). Although the paper on numerical taxonomy by Williams and Dale refers to the needs of "the newcomer to this field" in its introduction, for this reader as a newcomer the article gives, to transpose the words of Preston's description from the preface, a somewhat bewildering look to this new field; the writing seems to be directed to a class of specialists that in my guess will include but few taxonomists, important though the principles discussed no doubt are to taxonomy.

The book contains at least its share of errors, including a conspicuously garbled address for Lamport on the page before the preface, and the delightfully suggestive "Unexpected leaves" appearing prominently in Table X on page 177.

PETER M. RAY

Division of Natural Sciences, University of California, Santa Cruz

New Books

Biological and Medical Sciences

SCI:ENCE

Index to Volume 153
July–September 1966

Editorial Board

ROBERT L. BOWMAN
JOSEPH W. CHAMBERLAIN
JOHN T. EDSALL
EMIL HAURY
ALEXANDER HOLLANDER
WILLARD F. LIBBY
GORDON J. F. MACDONALD
EVERETT I. MENDELSOHN
NEAL E. MILLER
JOHN R. PIERCE
KENNETH S. Pitzer
ALEXANDER RICH
DEWITT STETTEN, JR.
CLARENCE M. ZENER

Editorial Staff

DAEL WOLFLE
 Publisher

HANS NUSSBAUM
 Business Manager

PHILIP H. ABelson
 Editor

EARL J. SCHEGAO, Advertising Director

Published by the
American Association for the Advancement of Science
1515 Massachusetts Avenue, NW, Washington, D.C. 20005

Printed in Washington, D.C., by National Publishing Company
Copyright 1966 by the American Association for the Advancement of Science
<table>
<thead>
<tr>
<th>No.</th>
<th>Date of Issue</th>
<th>Pages</th>
<th>No.</th>
<th>Date of Issue</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3731</td>
<td>1 July</td>
<td>1–100</td>
<td>3738</td>
<td>19 August</td>
<td>803–910</td>
</tr>
<tr>
<td>3732</td>
<td>8 July</td>
<td>101–236</td>
<td>3739</td>
<td>26 August</td>
<td>911–1046</td>
</tr>
<tr>
<td>3733</td>
<td>15 July</td>
<td>237–336</td>
<td>3740</td>
<td>2 September</td>
<td>1047–1146</td>
</tr>
<tr>
<td>3734</td>
<td>22 July</td>
<td>337–472</td>
<td>3741</td>
<td>9 September</td>
<td>1147–1326</td>
</tr>
<tr>
<td>3735</td>
<td>29 July</td>
<td>473–564</td>
<td>3742</td>
<td>16 September</td>
<td>1327–1434</td>
</tr>
<tr>
<td>3736</td>
<td>5 August</td>
<td>565–666</td>
<td>3743</td>
<td>23 September</td>
<td>1435–1586</td>
</tr>
<tr>
<td>3737</td>
<td>12 August</td>
<td>667–802</td>
<td>3744</td>
<td>30 September</td>
<td>1587–1690</td>
</tr>
</tbody>
</table>

Names of authors of books reviewed are printed in SMALL CAPITALS.
Instructions for Contributors

The Editors of Science

General Editorial Policies

All papers submitted are considered for publication. The author's membership or lack of membership in the AAAS is not a factor in selection. Papers are accepted with the understanding that they have not been published, submitted, or accepted for publication elsewhere. Authors will usually be notified of acceptance, rejection, or need for revision in 4 to 5 weeks (Reports) or 6 to 10 weeks (Articles).

Types of papers. Six types of signed papers are published: Articles, Reports, Letters, Technical Comments, Meeting Reports, and Book Reviews. Familiarize yourself with the general form of the type of paper you wish to submit by looking over a recent issue of the journal, and then follow the instruction for that type of paper.

Reviews. Almost all Articles, Reports, and Technical Comments, whether solicited or not, are sent to two or more outside referees for evaluation of their significance and soundness. Forms showing some of the criteria reviewers are expected to consider are available on request.

Editing. Papers are edited to improve the effectiveness of communication between the author and his readers. The most important goal is to eliminate ambiguities. In addition, improvement of sentence structure often permits readers to absorb salient ideas quickly. When editing is extensive, with consequent danger of altered meanings, papers are returned to the author for correction and approval before type is set. Authors are free to make additional changes at this stage.

Proofs. One set of galley proofs or an equivalent is provided for each paper. Keep alterations to a minimum, and mark them only on the galley, not on the manuscript. Extensive alterations may delay publication by 2 to 4 weeks.

Reprints. Reprints are provided at cost. An order blank accompanies most proofs. Special arrangements can be made to obtain reprints of letters and book reviews.

Writing Papers

Organize your material carefully, putting the news of your finding or a statement of the problem first, supporting details and arguments second. Make sure that the significance of your work will be apparent to readers outside your field, even if you feel you are explaining too much to your colleagues. Present each step in terms of the purpose it serves in supporting your finding or solving the problem. Avoid chronological steps, for the purpose of the steps may not be clear to the reader until he finishes reading the paper.

Provide enough details of method and equipment so that another worker can repeat your work, but omit minute and comprehensive details which are generally known or which can be covered by citation of another paper. Use metric units of measure. If measurements were made in English units, give metric equivalents.

Avoid specialized laboratory jargon and abbreviations, but use technical terms as necessary, defining those likely to be known only in your field. Readers will skip a paper they do not understand. They should not be expected to consult a technical dictionary.

Choose the active voice more often than you choose the passive, for the passive voice usually requires more words and often obscures the agent of action. Use first person, not third; do not use first person plural when singular is appropriate. Use a good general style manual, not a specialty style manual. The University of Chicago style manual, the style manual of the American Institute of Physics, and the Style Manual for Biological Journals, among others, are appropriate.

Manuscripts

Prepare your manuscript in the form used by Science. Use a good bond paper for the first copy. Submit two carbons. Do not use "erasable" or thin paper for the first copy. Double-space title, abstract, text, signature, address, references (including the lines of a single reference), figure legends, and tables (including titles, columns, headings, body, and footnotes). Do not use single-spacing anywhere. Put the name of the first author and the page number in the upper right-hand corner of every page.

Paging. Use a separate page for the title: number it page 1. Begin each major section—text, references and notes, and figure legends—on a new sheet. Put each table on a separate sheet. Place figure legends and tables after the references.

Titles. Begin the title with a word useful in indexing and information retrieval (not "Effect" or "New").

References and Notes. Number all references to the literature, footnotes, and acknowledgments in a single sequence in the order in which they are cited in the text. Gather all acknowledgments into a single citation, and keep them short ("I thank," not "I wish to thank"). Cite all references and notes but do not cite them in titles or abstracts. Cite several under one number when feasible. Use Chemical Abstracts List of Periodicals for abbreviations of journal names. If the journal is not listed there, provide the full name. Use the following forms:

Journal: H. Smith, Am. J. Physiol. 98, 279 (1931).

Illustrations. Submit three copies of each diagram, graph, map, or photograph. Cite all illustrations in the text and provide a brief legend, to be set in type, for each. Do not combine line drawings and photographs in one illustration. Do not incorporate the legend in the figure itself. Use India ink and heavy white paper or blue-lined coordinate paper for line drawings and graphs. Use heavier lines for curves than you use for the axes. Place labels parallel to the axes, using capital and lower-case letters; put units of measurement in parentheses after the label—for example, Time (sec). Plan your figures for the smallest possible printed size consistent with clarity.

Photographs should have a glossy finish, with sharp contrast between black and white areas. Indicate magni-
INSTRUCTIONS FOR CONTRIBUTORS

Keep them short—up to 35 characters and spaces. Do not use more than one degree or level of subheads.

Provide a summary at the end.

Do not submit more than one illustration (table or figure) for each 4 manuscript pages unless you have planned carefully for grouping. With such planning, many illustrations can be accommodated in one article. Consult the editorial office for help in planning.

Reports

Short reports of current research results may vary in length from 600 to 2000 words (up to 8 manuscript pages) of text. Limit illustrative material (both tables and figures) to one item for each 3 manuscript pages. Three items is the maximum. A research report should have news value for the scientific community or be of unusual interest to the specialist or of broad interest because of its disciplinary nature. It should contain solid research results or reliable theoretical calculations. Speculation should be limited and is permissible only when accompanied by solid work.

Title. Begin the title with an important word (preferably a noun) that is likely to be useful to indexers. The title may be a conventional one (composed primarily of nouns and adjectives), a sentence (containing a verb), or a structure with a colon (Nictitating Membrane: Classical Conditioning and Extinction in the Albino Rabbit). Limit it to three lines of complete words of no more than 32 characters per line (spaces between words count as one character each). Do not use abbreviations. Type the title in the middle of page 1.

Abstract. Provide an abstract of 45 to 55 words on page 2. The abstract should amplify the title but should not repeat it or phrases in it. Qualifying words for terms used in the title may be used. Tell the results of the work, but not in terms such as “——,” “was found,” “is described,” or “is presented.”

Text. Begin the text on page 3. Put the news first. Do not refer to unpublished work or discuss your plans for further work. If your paper is a short report of work covered in a longer paper to be published in a specialty journal, you may refer to this paper if it has been accepted. Name the journal. If the manuscript has not been accepted, refer to it as “in preparation.” Omit references to private communications. Do not use subheadings.

Signature. List the authors on the last page of the text and give a simple mailing address.

Received dates. Each report will be dated the day an acceptable version is received in the editorial office.

Letters

The Letters section provides a forum for discussion of matters of general interest to scientists. Letters are judged only on clarity of expression and interest. Keep them short and to the point; the preferred length is 250 words. The editors frequently shorten letters.

Technical Comments

Letters concerning technical papers in Science are published as Technical Comments at the end of the Reports section. They may add information or point out deficiencies. Reviews are obtained before acceptance.

Meeting Reports

Meeting reports should summarize two to four of the most important scientific results and give an interpretation of them in terms that can be understood by a wider audience than that represented by those who attended the symposium. Focus your report on events that will have interest, news value, and significance to an audience of varied background. A definitive report is not possible, and a catalog of who spoke on what subject is dull.

Book Reviews

Book reviews for Science are solicited. Describe, appraise, and evaluate the book. Write for a general scientific audience. Consider the book's scope, purpose, contents, and potential usefulness, and state your opinion of the book clearly and concisely.

Cover Photographs

 Particularly good photographs suitable for use on the cover are desired if they can be published in connection with any type of paper.
IMPractical To EXPERiment WITH THE REAL THING? SIMULATE.

FREE REPORTS FROM EAI SHOW YOU HOW

In the Life Sciences it's not always practical or even possible to experiment with the real thing. That's why researchers and educators are turning to the Analog Computer to dynamically simulate living systems. A dynamic model is easier and more convenient to experiment with. You build a mathematical model of the living system either from analytical analysis or empirical insights. All this without the dangers and difficulty of experimenting with a living system. The Analog Computer is also finding increased use in instrumentation and automatic on-line signal processing. Below are some reports on the use of Analog Computers in the Life Sciences. Send for any that interest you.

1. Analog simulation in biomedical research and education
2. Analog and Hybrid Computers in instrumentation and automatic on-line signal processing
3. A survey of accomplishments in bio-engineering
4. On-line computation of cardiac output from dye dilution curves
5. Respiratory control system
6. A one-organ chemotherapy model
7. The human pupil servomechanism
8. A hunt-parasite problem
9. A CO2 rebreathing study
10. Analog computer simulation of the cardiovascular system of the fetal lamb
11. Simulation of oxygen dynamics in water purification
12. An analog program for electroencephalographic data and analysis
13. Hybrid computer analysis of electrocardiographic data
14. A simple Analog Computer program to calculate membrane permeability coefficients for water
15. Primer on analog computation
16. Description of TR-20 and TR-48/DES-30 desktop analog/hybrid computers
17. The EAI 680—an economical high-performance analog/hybrid computer

CHECK THE REPORTS YOU WANT

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17

NAME
TITLE
ADDRESS
CITY STATE ZIP

EAI ELECTRONIC ASSOCIATES, INC. West Long Branch, New Jersey 07764