... Studies of psychiatric effectiveness, whether their conclusions are favorable or not, characteristically overlook the meaning of the patient’s “choice” of adaptive responses to a painful world. One may say that the patient and the person reporting spontaneous remission of symptoms are equally programmed by their experiences, but that the program elicits a different adaptation in each case. Isn’t it fortunate, then, that clinical psychiatry can serve those whose programs dictate a mode of secular medical assistance? The very fact of therapy may influence the individual’s “choice” of responses, but that proves nothing more than its perceived usefulness. Realistically, psychiatric insights are so influential that whether they are absolutely true or not is historically irrelevant. They came into existence to meet a need, and modern society could not be imagined without them. They are probably necessary first steps toward a true science of the mind.

DON BRONKEMA

110 Bleecker Street, New York 10012

... If the hypothesis is correct, and I as an interested nonprofessional find the evidence impressive, that psychoanalysis does not in fact contribute to the cure of mental disease or to measurable improvement in mental health, what should the scientific community do about it? The Hoxsey clinic with its cures for cancer was eventually effectively quarantined on the basis of scientific opinion. Recently we have had the “battery additive” and Krebiozen cases. These are smaller issues and much less dangerous for the scientific community. The responsibility of the scientist in shielding the public from more pervasive possible frauds is even greater. If typical psychoanalysis is basically a fraud insofar as it does not deliver what it purports to deliver, and in return for a fee, then surely something should be done about it.

As the evidence accumulates and the minority of psychologists and psychiatrists become more vocal, it may be wise for a responsible body, such as the National Academy of Sciences, to set up a committee to study the matter before it is sensationalized by the press some years hence. One of the special difficulties that can be anticipated is that deeply religious believers in the mythical thought structure of Freudian analysis are to be found at the highest educational levels. Will such an en-

Rimland’s letter reveals anger over the failure of psychiatrists to make impartial judgments about the effectiveness of their daily work and about the soundness of their theories. ... Psychiatry and psychology are infant sciences in the 20th century, swathed in superstition and under authoritarian control. The visible inadequacies of psychiatry should not be a source of anger but rather a spur to the inquiring mind; they should also be a stimulus to scientific humility.

The psychiatrists of the 21st century will look back with amusement and tolerance (let us hope) at the psychiatry of today. Let us pray that they are that much ahead of us!

JOHN T. FLYNN

Beekman-Downtown Hospital, 170 William Street, New York 10038

Specialization and Medical Education

The lucid letters of Mellinkoff and King (11 Nov.) go to the heart of several of the many complex problems afflicting medical education, whereas much of the current writing on the subject is characterized by stereotypical and wishful thinking. For example, proposals to produce greater numbers of general practitioners more often reflect the myth of the old-fashioned family doctor than familiarity with the history of medicine and current medical needs and social problems. Ignored, among other facts, are the increasing mobility of the average individual and average family, and the increasing demand by the public for direct access to specialists.
Anyone can take perfect micrographs with the Ultraphot II

Because all you do is focus and touch a button. Ultraphot II's automatic bellows-type camera system does the rest. Result: sharp, perfectly focused micrographs by anyone in the lab. Zeiss has coupled easy, automatic operation with unmatched versatility to make the Ultraphot II the most practical photomicroscope available. No other instrument offers versatility like this: (1) You can use 4 x 5 plate, sheet film or Polaroid 500 (attachment for 35mm film also available). (2) Use Luminar lenses for sharp, high-contrast, wide-angle macrographs at magnifications as low as 2.5x. (3) Work with reflected or transmitted light—or both simultaneously. (4) Choose any of three light sources: tungsten, high-pressure mercury or carbon arc with automatic feed. (5) Replace the camera head with a projection head for group viewing. (6) Use any objective out of more than 120 available. (7) Increase magnification by 1.25x, 1.6x or 2x—without changing focus or eyepieces—with the built-in Zeiss OPTOVAR. (8) Choose from a full complement of accessories to do any kind of study in your specialty. For complete information, write Carl Zeiss, Inc., 444 Fifth Avenue, New York, New York 10018. In Canada: 14 Overlea Boulevard, Toronto. COMPLETE SERVICE FACILITIES AVAILABLE.

Dept. SC.
ABSORPTION RECORDINGS IN 5 MILLISECONDS

New Durrum instrument simplifies rapid kinetic studies based on the stopped-flow technique, permitting measurement of chemical reaction half times as short as five milliseconds. It mixes two liquid components, follows their change in monochromatic light absorption at selected wavelengths from 2500 to 8000 Angstroms, and records the change as a function of time on a storage oscilloscope. You can retain several successive traces for comparison, and photograph the CRT for a permanent record.

The instrument measures sample volumes as small as 0.2 ml of each component. Built-in heat exchange coil and circulating pump permit operation at elevated or reduced temperatures when used in conjunction with readily available laboratory water baths. Instrument parts contacting sample are fabricated of stainless steel, Teflon, Kel-F, glass or fused silica, and are capable of withstanding a wide variety of component solutions and reaction products.

MULTIPLE-USE VERSATILITY

Modular design facilitates addition of new accessories and techniques as they become available in the fast-moving field of kinetic studies. The standard instrument measures absorption of visible light through a 20 mm light path. Standard equipment (price $10,800) includes mixing chamber, monochromator and light source, power supplies and electronics, circulating pump and heat exchange coil, storage oscilloscope and camera. Accessories and attachments expand capabilities for fluorescence, ultraviolet, and short path length measurements. Prices for partial or complete systems range from $4,900.00 to $11,835.00.

TYPICAL APPLICATIONS

Enzyme-substrate reactions, catalytic studies, metal-ligand reactions, bioluminescence, concentration jump, fluorescence, and absorption measurements are a few potential applications for the instrument.

FOR FURTHER INFORMATION

Write Durrum for references, four page price list of systems and accessories, and new illustrated brochure describing the instrument.

Available through Techmation, Ltd., in London, Paris, Dusseldorf, and Amsterdam. Write for name of agent in other overseas locations.

Among the many economic problems, insufficient attention is given to the high cost of medical education. If we are to recruit enough highly qualified students to study medicine, medical education will have to be subsidized by direct federal grants to the student, without a means test. While I am familiar with noteworthy exceptions, most medical students are being contaminated by a value gradient along which "basic research" is placed in a hallowed shrine, with clinical or applied research and teaching in descending order of value. That such valuation is specious is recognized by those department chairmen, as King indicates, who encourage the highest standards in every area of professional work, and who thereby tend to elicit the most productive and creative work from students and co-workers.

H. ROBERT BLANK
Department of Psychiatry,
Albert Einstein College of Medicine,
New York 10061

One is relieved to read that the more medicine tends to become a science "the more it becomes simple and easy to understand" (Mitchell, Letters, 11 Nov.). In one field, radiology, the time when it will be simple and easy seems to be receding. So much knowledge has been acquired since 1945 that one person cannot know it all; not that it is too difficult; there is too much.

Radiation therapy is a separate discipline; curable types of cancer (larynx, cervix, tongue, and others) are now being treated by people with special experience and proven ability. The scope of diagnostic radiology in a large hospital practice is too great for any one man to handle with authority. Therefore, it is divided into subspecialties, not only according to organ systems, but according to the age of the patient. Pediatric radiology has some 100 practitioners in the United States, even though it became an established subspecialty only in the past 20 years. Knowledge in this field alone has increased to the extent that one man can no longer be expected to be thoroughly familiar with all aspects of radiographic manifestations of diseases in children.

Generally 5 to 6 years of training after the internship are necessary for a radiologist to acquire expert knowledge in an area of pediatric x-ray diagnosis. Some specialize in children's diseases of the heart, especially congenital heart disease, others in diseases of the genitourinary tract, still others in dis-
Senior and visiting scientist appointments in Fundamental Research

The Space Sciences Department, Douglas Missile & Space Systems Division, Santa Monica, has openings for full-time and visiting Senior Scientists in the following areas:

- Solar Astrophysics
- Plasma Geophysics
- Theoretical Physics
- Planetary Interiors, Atmospheres, & Surfaces
- Ocean Sciences
- Space Radiation Experiments
- Planetary Meteorology
- Atmospheric Physics

If you are interested in working with a dynamic research group and have a Ph.D. or equivalent, submit your resume to K.F. MacDonald, Douglas Missile & Space Systems Division, 5300 Bolsa Ave., Huntington Beach, California.

An equal opportunity employer

Automatic Language Processing: Source of Funds

In discussing the report of the Automatic Language Processing Advisory Committee, National Academy of Sciences—National Research Council entitled *Language and Machines: Computers in Translation and Linguistics*, Bryce Nelson reported an interview with R. Ross Macdonald, director of the Georgetown University Machine Translation Research Project (6 Jan., p. 59). According to the article Macdonald denied that the National Science Foundation had ever supported the Georgetown MT group—as stated in the Automatic Language Processing Advisory Committee report. “Macdonald argued that this was one of the errors in the report, since it was known that all NSF money given to the Georgetown project came from the CIA.” It happens that the National Science Foundation did make grants (G-2723, G-3867, and G-5513) of $106,000 to the Georgetown MT Project. My authority for these figures is page v of the Georgetown University Machine Translation Research Project “General Report” (June 1963) prepared by R. Ross Macdonald.

A. HOOD ROBERTS
Automatic Language Processing Advisory Committee, National Academy of Sciences, Washington, D.C. 20418

eases of the skeleton; of the latter, one man is particularly interested in the pelvic bones. There is one person in the country who can rightfully be called a pediatric neuroradiologist.

One must agree with Mitchell that “a foundation of trained clinical observation is necessary” in medicine. It is hard to see how this makes specialization unnecessary. Even if man’s capacity for knowledge were limitless, his time to acquire it is not. A boy with a removable brain tumor or a surgically curable congenital cardiac malformation would benefit more from being seen by a physician with relevant special experience than by one without it.

Specialization is not evil; what is to be deplored is *specialism*, a parochial attitude. The general physician is not immune to it, as we can see when he deplores specialization.

STEVEN E. ROSS
University of California School of Medicine, San Francisco 94122
A SHORTER PATH TO PRACTICAL ELECTRONIC MEASUREMENTS

One requirement is common to all scientific research... threads through all development engineering... marks every empirical exercise — the need to measure. Our interest in this arises from the fact that electronic circuits (often with transducers) are generally the most practical means for measuring and recording parameters. Moreover, an increasing number of practical and economical electronic measuring circuits employ Operational Amplifiers — our specialty in analog computing devices since before 1946, and as a circuit component since their introduction as such in 1952.

During the past twenty years, we have been privileged to work closely with specialists in many disciplines, helping them to design and build literally thousands of different kinds of circuits — instruments, signal “conditioners”, and data “processors” and others ad infinitum. We have learned that our “opposite numbers” in Chemistry, Metallurgy, Aerodynamics, Hydraulics, Mathematics, Stress Analysis, Physics, Thermodynamics, etc., are generally enthusiastic about what Analog Operational circuits can do, but almost totally disinterested in how they can be made to do it... and that is pretty much as it should be. To each his own.

We have observed that a major deterrent to more widespread use of the powerful Analog Way (of sensitive, accurate measurement and data processing) has been the time, effort, and considerable skill required to convert the circuit diagram into a complete, functioning instrument. Now we have found a way to speed and simplify that process. We call it the Universal Operational Module (U.O.M.): One such module, the Q3-A1P, is shown here.

The Q3-A1P consists of a unique mechanical structure, in which are mounted a high-performance, chopper-stabilized Operational Amplifier, a compatible power supply, and an “Operating Deck”, on which is located a cluster of conveniently-disposed, clearly-labeled jacks, for interconnecting input and feedback components with the amplifier and its supply. The structure also provides connectors and space for auxiliary networks, for input and output cables, and a front panel with duplicate input/output terminations. With a Q3-A1P and a few simple pluggable components (i.e., resistors, capacitors, etc.) any one of literally thousands of useful circuits — complete and ready to use — may be realized... minutes after it is conceived, without punching a hole, or soldering a wire.

Best of all, the physical organization of the Q3-A1P has been carefully planned to anticipate and prevent or circumvent most of the tiresome and unproductive “debugging” and “tweaking” that plagues almost any original design. Shielding, guarding, wire-routing; “strays”, “sneaks”, “parasitics” — you may forget them all, in almost every instance.

The Q3-modular packaging system which includes a variety of universal operational modules, some of which are listed in Table 1, permits concentration on the important things — What and Why, instead of How.

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3-A1P</td>
</tr>
<tr>
<td>Q3-A2P</td>
</tr>
<tr>
<td>Q3-J1P</td>
</tr>
<tr>
<td>Q3-M1P</td>
</tr>
<tr>
<td>Q3-M2P</td>
</tr>
</tbody>
</table>

These universal operational modules (U.O.M.’s) consist of a standard Q3 series package, equipped with a carefully optimized interface facility to permit the combination of amplifiers, networks, components, and power supplies into highly-flexible, universal analog devices.

If you have been thinking of adding staff, perhaps to accelerate important programs, consider this alternate possibility: reducing the instrumentation burden on your present staff, with Philbrick Q3 U.O.M.’s and Philbrick Applications Engineering assistance — both distinguished by their versatility, integrity and reliability.

Write today for MBA Package #4 which contains a short form catalog. Philbrick Researches, Inc., 25-F Allied Drive at Route 128, Dedham, Massachusetts 02026. Phone (617) 329-1600.
Electron micrograph and diffraction pattern taken on the HU-11C showing the crossed lattice images of the (200) planes of gold. The (020) and (002) planes = 2.04 Ångstroms. The (220) plane = 1.44 Ångstroms. All important factors such as contamination, stage drift, astigmatism and aberrations must be negligible to achieve this ultra-high resolution. The HU-11C was operated at an accelerating voltage of 100 KV and an electron optical magnification of 270,000 X. The illumination was tilted until the three reflections showed nearly equal intensity in the diffraction pattern; then the micrograph was taken.

FROM HITACHI PERKIN-ELMER

THE HU-11C: LEADER IN A NEW GENERATION OF ELECTRON MICROSCOPES

Here is the highest-resolution electron microscope in the world. The unique electromagnetic alignment and focusing system, centered on the objective lens, assures that ultra-high resolution conditions will be maintained on a day-to-day basis with unexcelled ease of operation. Resolution of better than five Ångstroms is guaranteed. Resolution of better than 1.5 Ångstroms has been demonstrated (see micrograph). Accelerating voltages of 50 KV, 75 KV and 100 KV provided. Magnification range: 400 X to 250,000 X. A 125 KV version of the HU-11C is available. A wide range of accessories extends the research capabilities of the HU-11C Electron Microscope. Electron Microprobe Attachment, Image Intensifier and Electromagnetic High Resolution Darkfield Attachment are but a few of the many outstanding accessories available. For full details, write to: The Perkin-Elmer Corporation, Electron Microscope Dept. 723 Main Avenue, Norwalk, Conn. 06852.