The Swiss have done it again... developed an analytical titrator to meet the specific needs of the research chemist in science or industry who is faced with establishing standards or other difficult analytical problems.

It's the E-436 Potentiometric Titrator by Metrohm of Switzerland.

This instrument not only measures and records potential changes due to pH. It also automatically adapts titration speed to the slope of the curve. When a pre-selected potential is reached, it stops automatically. Other features include increased sensitivity (with ranges of 1 pH or 50 mV spread over a recording width of 250 mm.), temperature compensation for pH measurement and built-in constant current and voltage sources for voltametry and amperometry. Accessories for conductometric, photometric and coulometric titrations are also available.

The E-436 Potentiograph comes equipped with the E-436E Titrating Set, consisting of motor-driven piston buret (with quick-change, bayonet-mounted glass cylinders) and swing-out magnetic stirrer. The results of the analysis are recorded either on individual sheets or on a continuous strip chart for later evaluation.

If this sounds like the kind of instrument that belongs in your lab, why not write for more details. We'll include information about the entire line of Metrohm Automatic Titrators. Address your inquiries to Metrohm Division Brinkmann Instruments, Inc. Westbury, New York 11590
abstract stating explicitly his view of the scientific location and linkages of his work? But more fundamental is the need to recognize that science needs a whole new corps of specialists to play a role in relation to science similar to that of the critics and historians of the arts.

KENNETH O. MAY
Department of Mathematics,
University of Toronto, Ontario, Canada

Citation indexing seems certain to gain widespread use because it reduces the untidy process of library searching almost to a rote method. But we must beware of the possibility that the procedure will replace old, less systematized, search methods to the extent that the busy worker, hurrying to publish ever faster, will avoid the responsibility of a truly complete library search. In some cases the referees will point out an overlooked paper, but they too may be using the same method, and papers overlooked by one author will be overlooked again many times as others follow his citation-lead.

Another objection discussed by Margolis concerns evaluation of the method. He states, "A new scale of values based upon citations is by no means infallible or, in many cases, even fair, but at least it provides an alternative to the existing one, which is at the root of the crisis." I would say that the existing method, paper-counting, is not considered a respectable method by most, whereas weighted citation counting has the sound of enough respectability to insure its acceptance by most (commonly cited) workers as well as by the paper counters. Therein lies its danger.

In general, people concerned with making evaluations are going to accept, without effective qualification, Margolis' statement, "It is reasonable to expect that the best contributions would have been among those cited most, while relatively unimportant papers would have attracted few, if any citations." There remains an obvious inequity owing to papers, however bad, being heavily cited, while other papers remain uncited because they are too far ahead of their time. When the method is used for evaluation, these refinements must be safeguarded.

N. C. JANKE
Department of Physics and Physical
Science, Sacramento State College,
Sacramento, California 95819
Will, Money, and Giantism

Nelson’s report on dramatic developments at State University of New York at Albany (News and Comment, 24 Mar., p. 1521), explains everything as a miracle produced by a peculiar vitality shared by the governor, the president of the state system, and an aggressive academic vice president. He notes that it exudes a “sweet smell of money.” What Nelson misses, however, is the background of strenuous, and often embittered, struggle for a broad and rigorous system of public higher education in a rich but lagard state.

A recent system president, Carlson, advocated dramatic development just a trifle prematurely, and he had to leave the state. Dean Blegen of Minnesota issued a research report on the New York lag in higher education and research and it received scanty attention in official circles. Faculty members who, as recently as 4 years ago, advocated or even predicted a fraction of the support that is now provided the university were distinctly unpopular with powers which still wield substantial authority. That power is now shared with newcomers. . . . Meanwhile the Albany student body remains, as Nelson indicates, extremely homogeneous in class and regional background. Few come from other states, few from the metropolis, and, of course, the percentage of minority racial or religious elements is vanishingly small. If pluralism stimulates intellectual alertness, this is a sign of continued lag.

Nelson correctly assessed the architectural giantism of Edward Durell Stone as a contribution to university vitality and lure. It is true that there is a will to attract to Albany both scientists and humanists who have “an edge” over the average men in their respective fields. And all this would be less important if it were not evidence that the academic motivation in the Empire State resembles that of several other states, as well as half a dozen other nations. Everywhere there is the will to “do better.” If an unclassified university is to aspire to the higher ranks, is the combination, then, of will, money, and giantism the winning formula?

ROBERT F. CREEGAN

Philosophy Department,
State University of New York at Albany, Albany 12224

Where the finest separation, analysis and purity evaluation of protein systems is being carried out...

DISC ELECTROPHORESIS

is in the act.

[Diagram showing various samples of proteins and their separations]

Now in use in more than 2000 laboratories, Disc Electrophoresis offers unequalled sensitivity (to 0.01 microgram), speed (separation in 10-30 minutes), simplicity and reproducibility. Disc Electrophoresis is applicable to almost every area of protein research and clinical investigation, improving over separations by other methods and giving new separations never before possible by any technique.

In Disc Electrophoresis, migration of sample substances through specially prepared columns of polyacrylamide gel produces exceptionally sharp bands of isolated fractions, “stacked” in disc-like zones as little as tens of microns thick. A random sample of the recent literature reporting uses of Disc Electrophoresis includes:

SUBSTANCES SEPARATED: Proteins, including C-reactive proteins, glycoproteins, mucoproteins, nucleic acids, nucleo-proteins and thyroxin-binding proteins; hemoglobins and haptoglobins; globulins, histones, human and bovine growth hormones, ovine follicle-stimulating hormone, human chorionic gonadotropin, enterotoxins, Hageman factor, C-crystallin, collagen, diglyceride and prolactin; amylose, aminoepitides, phosphatases; β-galactosidase, carbonic anhydrase, carboxypeptidase, dehydrogalactoside dehydrogenase, glycogen phosphorylase, lipase, lactic and malic dehydrogenase, Phosphorylase, ribonuclease, sialidase, transaminase and transpeptidase.

DIAGNOSIS OF: Acute schizophrenia, cancer of the breast and lung, glomerulonephritis, liver pathology, lupus erythematosus, macroglobulinemia, milk allergy, myeloma, myocardial infarction, nephrosis, normal and abnormal pregnancy, pneumonia, primary tumor sites, rheumatic fever, sickle cell anemia, thalassemia, tuberculosis and uremic-hemolytic syndrome.

See how you can apply the benefits of Disc Electrophoresis to your own research. Send now for complete information, including bibliography, without cost or obligation.

CANAL INDUSTRIAL CORPORATION
5635 Fisher Lane
Rockville, Maryland 20852/(301) 427-1515

Sales and Service Offices in: Boston, Houston, New York, Chicago, Los Angeles, Pittsburgh, Washington, D.C., Cincinnati, St. Louis, Toronto, Cleveland, Minneapolis, San Francisco, Denver, Philadelphia, Ottawa
LEITZ ORTHOPLAN MICROSCOPE stimulates your zest for research

An image area up to 2½ times greater than that possible with conventional wide-field instruments, is only part of the exciting "Bonus" that is yours with the new Leitz ORTHOPLAN Research Microscope. Full advantage is taken of the Plano objectives pioneered by Leitz to provide apochromatic image quality—with unequalled flatness throughout the field.

The ORTHOPLAN is ideally functional. Modular interchangeability of units and accessories provides for unlimited research capabilities and protects against obsolescence.

Modern facilities are provided for all forms of illumination, transmitted and reflected light, and photomicrography.

If you must have the finest research microscope in this world, only ORTHOPLAN can meet your need. You are buying a versatile precision instrument, not an integrated machine. Complete information on this new "standard" in microscopy will be sent on request.

E. LEITZ, INC., 468 PARK AVENUE SOUTH, NEW YORK, N.Y. 10016

Distributors of the world-famous products of Ernst Leitz G.m.b.H., Wetzlar, Germany—Ernst Leitz Canada Ltd.

LEICA AND LEICINA CAMERAS • LENSES • PROJECTORS • MICROSCOPES
A sensitive object.

This hydrogen flame detector makes the Beckman GC-5 gas chromatograph 6 times more sensitive than any other one on the market.

And there's more. A temperature programmer, for a wide variety of linear, non-linear and step-function programs. A separately heated valve compartment, for versatility in sampling. Complete temperature control at all points throughout the system. And the GC-5 is completely modular — a configuration for every analytical problem. Anything and everything you want for optimum GC analysis.

Price.
This GC-5 costs $3265. You can pay $70 less, but get only 1/6 the sensitivity. Or you can splurge for $200 more — and still get only 1/6 the sensitivity. The value can’t be touched, and the price is right — so send now for Data File 35.