3 New Gases from Matheson

For organic synthesis warning agent in fumigant gases, preparation of monomers, copolymers and stable fluids

Typical Reactions

Cyanogen Chloride/CICN
A colorless, toxic gas having an irritating odor and producing lacrimation. We supply it in No. 4 and 5 steel cylinders as a liquefied gas under its own vapor pressure of about 25 p.s.i.g. at 70°F. Minimum purity 97 mole %. It boils at 55.6°F. (13.1°C.) and freezes at 20.3°F. (-6.5°C.). Cyanogen chloride is used as an intermediate in organic synthesis, and as a warning agent in fumigant gases. For manual flow control, Matheson needle valves No. 55-660 and No. 5 cylinders, No. 58 are available.

Carbonyl Fluoride/COF₂
A colorless, toxic, strongly irritating gas. Shipped in steel cylinders as a liquefied gas under its own vapor pressure of about 800 p.s.i.g. at 70°F. Minimum purity 97 mole %. It boils at -117.6°F. (-83.1°C.) and freezes at -173.2°F. (-114.0°C.). Carbonyl Fluoride is used as an intermediate in organic synthesis. For manual flow control Matheson needle valves No. 55-660 and for lecture bottles, No. 58 are recommended.

Hexafluoroacetone — CF₃COCF₃
A colorless, nonflammable, hygroscopic gas, of moderate toxicity. It is a highly versatile ketone for organic synthesis and for the preparation of such diversified products as stable fluids, solvents, adhesives, monomers, copolymers, and agricultural and pharmaceutical chemicals. Shipped in steel cylinders as a liquefied gas under its own vapor pressure of about 70 p.s.i.g. at 70°F. Minimum purity 99.5%. It boils at -18.4°F. (-28°C.) and freezes at -200.2°F. (-129°C.). For automatic pressure regulation, we recommend Matheson regulators No. B15-660 or No. B15C-660 and for manual flow control needle valve No. 61-660. For lecture bottles, use needle valve No. 32 or 59.

Mail Coupon for Prices and Data

The Matheson Company, P.O. Box 85, East Rutherford, N. J.
Please send prices and data on:

☐ Cyanogen Chloride  ☐ Hexafluoroacetone
☐ Carbonyl Fluoride  ☐ 1967 Gas Catalog

Name ____________________________
Firm __________________________________
Address ____________________________
City, State, Zip _______________________

16 JUNE 1967  1437
pressure on secondary students must be shared by many agencies. ... In my research on "student class loads" 17 years ago ("Incompatibility between class load and study time in the typical American minor seminary," Fordham University, 1950), I detected the beginnings of this academic pressure in widely divergent areas of study. It would be useful to learn to what extent the pressures of education are contributing factors in the mounting disorders on the college and university campus. Is the student actually rebelling against a mechanistic structuring of American education rather than the American philosophy of life?

EVERETT F. BRIGGS
Post Office Box 86, Monongah, West Virginia

Crafts: Forerunners of Science

There is an analogy between the model for the geographical expansion of science into "colonial" areas which Basalla has described ("The spread of Western science," 5 May, p. 611) and the intellectual expansion of science into traditional areas of technology. Just as geographically outlying areas provided new facts and observations about nature that stimulated the growing biological and geological sciences, so did the established crafts provide a veritable museum of mechanical effects and chemical reactions to test theoretical notions and suggest new areas for research in the physical sciences. The works of Hooke and Boyle are full of references to artisans' "secrets." The intimate concern with crafts in 18th-century France exemplified by the Encyclopédie; the reexamination of the smelters' and assayers' quantitative separatory operations by chemists in Sweden and Germany; and the extension of analysis from metallic minerals to rocks in general impelled by the desire to duplicate imported Chinese porcelain—all these were essential preliminaries to the "Chemical Revolution." A century and a half later, practical knowledge of the alloying, crystallization, and deformation of metals assisted the birth of a physics of solids. Like the colonial, the craftsman was close to a rich and varied nature and, at first, did not philosophize too much.

Basalla's second phase too was matched (at least in the field with which I am most familiar—metallurgy), by a period in which the colonial tech-
nologists developed a derived but useful science. However, metallurgists in the 19th century not only used the methods derived from analytical chemistry to select their raw materials and control their operations, but they also kept alive an interest in structure and structure-sensitive properties that were utterly beyond the pale until the 1950's, as far as physicists were concerned. Eventually, however, the local science grew in stature to meet a parental science of ever-widening significance, and boundaries disappeared. Ferrous and nonferrous metallurgy merged within the framework of chemical thermodynamics; then ceramics and other inorganic materials joined them within a new branch of physics, that of the solid state.

Perhaps the next stage will be to treat biological and synthetic organic materials along with inorganic ones, within a broad science that relates everything to hierarchical arrays of electrons, photons, and atomic nuclei, partially disordered and marvellously interwoven.

In both geographical and technological colonies, it is not the development of local independent and competitive systems that marks maturity; rather, it is the merging of all into a worldwide scheme that has regions but little regionalism.

Where are the colonial regions to serve science today? Where they have always been, I think—in the arts, both fine and practical. Where else do psychology, biology, and information theory meet with the physics and chemistry of materials to exploit and so to reveal the nature of complex structure?

Cyril Stanley Smith
Department of Humanities,
Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

More on the Stoical Cat

Pittenger's cats were not unperturbable, as your caption suggested, but merely unperturbed (Letters, 12 May). Domesticated cats do not twitch at familiar sounds, from which I infer that his subjects lived in very interesting households.

But let him invent a new sound, and he will spot a twitch. Or, of course, an old sound that means danger or food.

A. E. Brown

29 Oak Ridge Avenue,
Summit, New Jersey

16 June 1967

the sign of copyright.

America's system to promote and protect the free exchange of written words. Copyright has made possible the complex of scientific and technical journals which provide America and the world of science with a ready means of communicating new ideas and recent findings in every field. Today, photocopying and the computer threaten to destroy the system of copyright, and with it the journal and book industry it has fostered.

Without protection, who can publish? Without publishing, how will the members of the scientific community keep in touch with each other?

Congress is now revising the copyright law. Published hearings on the subject fill many volumes; proposals are complex and their effects complicated. Nearer to the Dust is a clear, readable presentation of the history, problem and promise of copyright in the machine age, and of the dilemma facing lawmakers, writers, and researchers today.

from The Williams & Wilkins Company
Baltimore
publishers of medical and scientific books and periodicals

NEARER TO THE DUST

COPYRIGHT AND THE MACHINE
BY GEORGE GIPE
FOREWORD BY FELIX MORLEY
$4.95

AT YOUR BOOKSTORE TODAY
Microscopy of "hot" materials - at a distance

Radioactive and highly toxic materials may be easily and safely examined with the new Leitz MM5-RT Metallographic Microscope. The MM5-RT is a completely integrated single assembly consisting of two basic units operating on both sides of a shielded wall.

An inverted stage, objective lenses and driving mechanisms are combined in the examination unit that can be positioned in a sealed, isolated, radiation-proof chamber. The Le Chateliers-type stand, with vertical illumination from below, permits examination of relatively large specimens in bright-field, dark-field and polarized light. Optical elements in this emission zone are of radiation-resistant glass. Both the light path and the optical path are sealed by radiation-proof glass.

At the control and observation unit, controls are grouped together conveniently, enabling precise, sensitive manipulation of the specimen and optical elements.

Refined electronic and mechanical remote controls activate: stage travel, rotation and vertical motion; change of magnification; adjustment of aperture; field and dark-field diaphragms; polarizer and analyzer; a "hardness" tester. The tester is positioned to make an indentation within the visual field.

The specimen is observed on the large (14") ground-glass projection screen or through the binocular tube; a mounted 4" x 5" bellows camera (Polaroid* back optional) instantly records any selected field. Stage travel in any direction is indicated on two panel meters, and the stage can be recentered at the touch of a button.

For further information on research and industrial applications of the MM5-RT, write: E. LEITZ, INC., 468 Park Ave. South, New York, N. Y. 10016. *POLAROID IS A REG. T.M. OF POLAROID CORP."
This hydrogen flame detector makes the Beckman GC-5 gas chromatograph 6 times more sensitive than any other one on the market.

And there's more. A temperature programmer, for a wide variety of linear, non-linear and step-function programs. A separately heated valve compartment, for versatility in sampling. Complete temperature control at all points throughout the system. And the GC-5 is completely modular—a configuration for every analytical problem. Anything and everything you want for optimum GC analysis.

A sensitive subject.

Price.
This GC-5 costs $3265. You can pay $70 less, but get only 1/6 the sensitivity. Or you can splurge for $200 more—and still get only 1/6 the sensitivity. The value can't be touched, and the price is right—so send now for Data File 35.