SPECIAL OFFER
Good Only Until 31 August 1967

SYMPOSIUM ON BASIC RESEARCH
308 pp., cloth, 1959. $3.00 (regular price). Special: $1.00

No billing—send check with order

From the reviews:

Journal of the American Medical Association, 30 January 1960:
"The report of a three-day conference presents a series of papers by outstanding leaders in science, government, education, and industry on problems general to all scientific work... The symposium attempted to discourage compartmentalization of research and emphasized the idea that any program should be an integral part of a larger program for support of creative scholarships in the broadest sense of the term. A major objective of basic research might be the never-ending search for better understanding of man himself and of the total world, animate and inanimate, in which he lives."

AIBS Bulletin, October 1960:
"There are two things which set this symposium volume apart from most of its kind: it was published within a few months of the event, and the summary by the editor is an excellent synthesis of the actual papers and, evidently, of the discussion. It is hard to summarize; those interested in ideas about basic research or in reinforcing their own views about 'science for science's sake' should read the book for themselves."

Quarterly Review of Biology, June 1961:
"Events in the world today lend special urgency to the conclusions reached and the recommendations for action. If the roots of the tree of knowledge are not adequately nourished and its blossoms are haphazardly pollinated, it will ultimately cease to bear fruit."

ASTM Bulletin, February 1960:
"This publication should be 'must' reading for anyone who has responsibility in the field of research of any kind..."

ORDER COUPON

To: AAAS Publications
1515 Massachusetts Ave., NW,
Washington, D.C. 20005

Enclosed find check or money at the special $1.00 per copy rate for Symposium on Basic Research. Please send copies to:

Name
Address

SPECIAL OFFER
Good Only Until 31 August 1967

SYMPOSIUM ON BASIC RESEARCH
308 pp., cloth, 1959. $3.00 (regular price). Special: $1.00

No billing—send check with order

From the reviews:

Journal of the American Medical Association, 30 January 1960:
"The report of a three-day conference presents a series of papers by outstanding leaders in science, government, education, and industry on problems general to all scientific work... The symposium attempted to discourage compartmentalization of research and emphasized the idea that any program should be an integral part of a larger program for support of creative scholarships in the broadest sense of the term. A major objective of basic research might be the never-ending search for better understanding of man himself and of the total world, animate and inanimate, in which he lives."

AIBS Bulletin, October 1960:
"There are two things which set this symposium volume apart from most of its kind: it was published within a few months of the event, and the summary by the editor is an excellent synthesis of the actual papers and, evidently, of the discussion. It is hard to summarize; those interested in ideas about basic research or in reinforcing their own views about 'science for science's sake' should read the book for themselves."

Quarterly Review of Biology, June 1961:
"Events in the world today lend special urgency to the conclusions reached and the recommendations for action. If the roots of the tree of knowledge are not adequately nourished and its blossoms are haphazardly pollinated, it will ultimately cease to bear fruit."

ASTM Bulletin, February 1960:
"This publication should be 'must' reading for anyone who has responsibility in the field of research of any kind..."

ORDER COUPON

To: AAAS Publications
1515 Massachusetts Ave., NW,
Washington, D.C. 20005

Enclosed find check or money at the special $1.00 per copy rate for Symposium on Basic Research. Please send copies to:

Name
Address
When you want dependable service on reagents, take a good look at your distributor's cuffs

If they look like this, you're talking to the right man. The symbol on his cuff links means that he is one of the 160 most dependable reagents distributors in this country—a Du Pont Reagents Distributor.

Du Pont Reagents Distributors are located strategically throughout the U.S. to give you the best in service and delivery. Your order receives prompt attention whether it be for 1 or 5 pint bottles, or for 6½ or 13 gallon carboys.

And your Du Pont Reagents Distributor will provide you with the latest in laboratory aids...the widely used Du Pont Laboratory Handbook.

Those cuff links are backed up by quality and safety too. Your Du Pont Reagents Distributor offers you reagents manufactured to the highest standards. And you get the latest in safety features.

Next time you need reagents in a hurry, remember the cuff links with the Du Pont Reagents symbol that means the best in service. If your Du Pont Reagents Distributor isn't wearing them, it's because he's got his sleeves rolled up, and is working on your order.

You can depend on Du Pont Reagents... For Quality, Service and Safety Features

NITRIC ACID GLACIAL ACETIC ACID
SULFURIC ACID AMMONIUM HYDROXIDE
HYDROCHLORIC ACID FORMIC ACID 90%

BETTER THINGS FOR BETTER LIVING...THROUGH CHEMISTRY

DU PONT COMPANY, ROOM
WILMINGTON, DELAWARE 19898
Send □ name of nearest Distributor □ Prices
□ Du Pont Reagents Lab Handbook & Catalog Sheet.

Name__
Title__
Firm__
Address__
City_________________________ State_______ Zip_______
Telephone No.__

*DU PONT COMPANY, ROOM
WILMINGTON, DELAWARE 19898
Send □ name of nearest Distributor □ Prices
□ Du Pont Reagents Lab Handbook & Catalog Sheet.

Name__
Title__
Firm__
Address__
City_________________________ State_______ Zip_______
Telephone No.__
showing affinity to the suborder Thecata. More recent authors were inclined to the view that the family should be included in the Athecata.

The Emperor obtained abundant specimens of two species of this family from Sagami Bay, and assigned one of them to Clathrozoan wilsoni Spencer, and the other to a new genus and species, Pseudoclathrozoan cryptolaroides. He describes these two species in detail with many illustrations including a color sketch of a specimen of the new species, many photographic figures of whole colonies of the two species and of sections of fixed specimens indicating zooids, skeletons, and coenosarcas, as well as fine diagrammatic figures of the structure of the colony, and a map of the part of Sagami Bay from which the specimens came.

The descriptions are given in both English and Japanese, in more detail in the former language. What is the most salient of the new discoveries made by the author is the presence of gonothecae containing gonosomes of the leptomedusan type. By this discovery the systematic position of the family Clathrozoanidae is settled as to be included in the suborder Thecata.

In the preface of this memoir, cordial appreciation is given to many who have given assistance to the author in one way or another. Outstanding among the scholars was the late Hirotaro Hattori, who was the Emperor’s tutor and consultant in biology for more than 50 years. The preface closes with the following words: “I should be more than happy if the present work of mine, subject to correction by interested scholars, could contribute even in the smallest way to the progress of academic studies.”

Taku Komai
Kyoto University,
Kyoto, Japan

The Fuzziness of “Fuzz”

The cynic has said that electron microscopes are adding more problems for the working biologists than they are helping to solve. On the plus side, more details of fine structure are being revealed as more varieties of cells are examined by improved methods of higher magnifications. Even if this is no more than extending the frontiers of our ignorance, as one skeptic puts it, whenever a new morphologic feature comes to the attention of the electron microscopist, a major problem is presented to him; he needs to give the newly discovered thing an identity—a name, and this problem is often resolved by the use of the word “fuzz.”

The outer surfaces of cells reveal complexities of structure when examined with high resolutions of the electron microscope. Often, fine filaments or thread-like structures extend outward from the cell membrane. First recognized on the surface of gall bladder epithelium by Yamada, the filaments were given the name of “Anten-
nullae microvilliars" (1). Bennett considered the evidence that the filaments and cell surface materials were carbohydrate to be substantial (2). He coined the term "Glycocalyx" (literally "sugar-cup" or "sugar-shell") for the cell surface structures, using glycocalyx in the sense of "sugar husk" or "sugar calyx," and analogous to the covering layers of seeds or flowers.

One of the first appearances of the word "fuzz" as a replacement for "antennullae microvilliars" and "glycocalyx" occurred in an article by Revel and Ito entitled "The surface components of cells" (3):

One extremely common type of surface coating consists of exceedingly fine filaments extending radially from the plasma-lamella. Such filaments were originally described by Yamada (1955) as "antennullae microvilliars" on the free surface of the gall-bladder epithelium. At present, this type of surface specialization is commonly referred to as "fuzz" since it imparts a hirsute appearance to the cell membrane. The thickness of the fuzzy coat and the amount of the surface membrane covered by it varies greatly. While some free living organisms such as the amoebae may be completely invested by such a layer, only the free surface of certain epithelial cells of higher organisms seem to have this layer. In certain cell types such as ova, erythroblasts, and Kupffer cells, a material similar to fuzz occupies small patches, or lines small invaginations of the cell surface. In other cells, while there is no visible surface coating, the presence of one can be inferred from the results of histochemical tests.

In reviewing a series of articles for a scientific journal in 1966, I encountered not only the word "fuzz," but also "fuzzy" and even "fuzz-like." At this point the threat of "fuzzoid" became real and I wondered whether electron microscopists were becoming a subculture (like teen-agers and musicians) and developing a language of their own by the use of ordinary words in extraordinary meanings. Webster defines "fuzzy" as (i) a puffball; (ii) a mass of fluffy particles or fibers, as the beard of an adolescent boy; (iii) a blurred effect; and (iv) slang, a policeman or officer of the law. In electron microscope use, the meaning closest is a mass of fluffy particles or fibers.

There is little serious objection to the introduction of new terms for new appearances, even a cumbersome term like "Antennullae microvilliars." The exuberant tropical jungle of intracellular inclusions has generated such terms as "autophagosomes," "cytosegrosomes" and "cytosomes" and other "-omes" ad infinitum if not ad nauseam. Such manufactured language seems reasonable although one can look forward to ad hoc study groups, and eventually national and international congresses to straighten out this nomenclature. What is objectionable in the use of the word "fuzz" by the electron microscopists is that it is taking over an ordinary word and using it in a very special meaning. My own belief is that the use of this word should be discouraged by editors because of the inappropriate application of a word describing something seen with the naked eye to structures visible only with the electron microscope.

Consider the future. I can imagine a conference given over to the study of such specializations of the cell surface and what can it be called except "The Conference on Fuzz"? As areas of study narrow, it is quite possible that enough investigators will make these specializations of the cell surface their own fields of study leading to the formation of a "Society for the Study of Fuzz" which in time might produce a Journal for the Study of Fuzz or the Fuzz Journal.

Such absurdities aside, the important point is that newly discovered structures require new descriptive terms. The "bonds of intelligibility" which link the past and the present with the future depend on special identifications of specific features or structures by the use of appropriate words. Any science is in a sense a language with a content of ideas, the language consisting of a mutually agreed upon set of meanings for the corresponding set of words. How does "fuzz" fit into this concept?

It is by no means certain that any sort of outcry or derision can remove the use of "fuzz" from the jargon of the electron microscopists. Indeed I am afraid that any serious criticism will only strengthen and reinforce its use. Still, one can wish that someone with an adequate vocabulary would devote enough time to find a suitable substitute. The word "fuzz" is unclear in meaning; one of its characteristics is "fuzziness."

J. F. A. McManus

Federation of American Societies for Experimental Biology, 9650 Rockville Pike, Bethesda, Maryland 20014

References

You don’t have to write your own computer programs to benefit from the PL/I programming system.

The performance of a computer installation is dependent upon the programming systems as well as upon the types and configurations of machines.

But, how do we measure installation performance?

In the past, throughput, the amount of work handled, was often used as a measurement of the performance. But it doesn’t measure the utilization of all of a computer installation’s resources. To do so requires the measurement of total problem-solving time. Simply defined, it’s the total amount of time it takes the installation to give you the answer you want after you’ve presented your problem.

In effect, it includes the entire sequence of man-machine actions: recognition and definition of the problem—testing and debugging of the program—execution (throughput) of the program—additions to the program—and, continued maintenance of the program.

In the past, it was also possible to describe an installation as either commercial or scientific/engineering.

Today, as the scope of both types of installations expands, their computing needs are beginning to overlap. This was why IBM SYSTEM/360 was designed with general-purpose capabilities to serve both. But what about the languages we use to communicate with computers? Don’t they have to serve both needs too if we are to shorten the total problem-solving time? This was the question we were faced with in 1963.

During the SHARE [an organization whose members use IBM systems] meeting in Miami in August 1963 a group got together informally to discuss what they were going to do about languages in the future. FORTRAN, for example, the first really successful scientific programming language had already gone through two major overhauls to increase its usefulness and extend its areas of application. Could it be extended further? A committee consisting of SHARE and IBM members was formed to survey the situation and recommend a course of action.

Its goal was to determine the state of the art, evaluate the existing language technology and to survey the work done in language development in both scientific and commercial areas during the previous five years. By no means a simple task!

As the committee studied the needs of computer users, it became apparent that existing languages like FORTRAN and COBOL had structural limitations.

But what would happen if we created a new language? Take the very best features of FORTRAN and COBOL and combine them in a general structure? The idea was attractive.

And so the committee recommended that such a language be developed. IBM then asked the committee to outline its structure.

The committee, now consisting of members of the SHARE and GUIDE user organizations and IBM, set several goals in its design of the new language.

First, it wanted to increase the range of problems which could be coded in this language.

Second, it wanted additional facilities which had rarely been considered for coding in a scientific/engineering compiler language. The reason for this is that as scientific and engineering applications become more sophisticated they require broader data manipulation capabilities.

Third, and extremely important as more and more scientists and engineers write their own programs, the committee wanted a clear and consistent language that could carry out more functions than existing languages yet have a simpler syntax.

The Basic level consists of a part of the language which is as easy to learn as any of the languages known today.

In effect, the committee designed a language that offered facility and promised less problem-solving time. That language, PL/I, has evolved with the help of the GUIDE and SHARE organizations and is now available to users of SYSTEM/360.

For a copy of a new booklet which describes the benefits of PL/I in more detail, write to: Director, Scientific Development, IBM Corporation, Department 805—352, 112 East Post Road, White Plains, New York 10601.
New, Low-Price Model 3310
Tri-Carb® Liquid Scintillation Spectrometer

- 200 Samples
- Controlled Temperature
- 3 Channels (Simultaneous)
- Automatic External Standardization
- Background Subtraction
- Optional Gamma Counting, Continuous Flow and Data Processing
- High Figure of Merit (E²/B)
- Proven Performance and Reliability
- Prices starting at $8950.00

For more information ask your Packard Sales Engineer for Bulletin 1057U., or write to Packard Instrument Company, Inc., 2200 Warrenville Road, Downers Grove, Illinois 60515, or Packard Instrument International S.A., 8001 Zurich, Switzerland.
is essentially a carefully engineered drain.

In view of the fact that the average natural low flow of the Ruhr is less than the volume of effluent discharged into the river, the Genossenschaften have done much in the cause of waste disposal and water supply in a very difficult situation. The associations have not, however, worked miracles. Water in some parts is not fit for drinking. Authorities have the power to shut down factories if their waste discharges rise above a certain level, but observers say that officials are hesitant to act when jobs and profits are at stake. During low-water periods it is necessary to pump water out of the Rhine into the Ruhr system. And while the inflow from the Rhine tributaries in the Ruhr does not, on balance, appreciably add to the already formidable pollution of the Rhine, the Emscher still poses such a serious problem that a biological treatment plant for the stream is planned.

There is little question, however, that the Genossenschaften prevent a bad situation from getting worse, and also that their operations are pertinent for Americans facing similar problems in maintaining supplies of usable water. Two aspects of the Genossenschaften activities seem particularly worthy of study. One is the coordination with land-use planning authorities and the other is the experience gained by the associations in allocating costs.

Methods differ among associations, but the general principle on effluent charges, as Kneese says, is that the discharging unit will be assessed on the basis of the quantity and quality of the effluent discharged into the system. One association determines the degree of pollution by the damage to a particular species of fish.

Virtually from the beginning, the associations have assessed costs for drainage operations necessitated by land subsidence caused by underground coal mining. The costs are divided between the beneficiaries of the drainage operations and the mines causing the subsidence.

In some respects the cost-assessment procedures are not highly refined or, in the case of pollution measurement, very sensitive to varying conditions in the rivers. But a good deal of experience has been gained in assigning monetary costs to damage to the environment, and fairly wide acceptance has been gained for the principle that the polluter should pay. Americans could learn from this German experience.

At the federal level in West Germany and the United States, officials are convinced that new and more effective measures are needed to correct abuses of the environment, abuses which may cause irreversible damage. In the United States, the Water Quality Act, the Clean Air Act, and the Solid Waste Disposal Act are evidence of governmental concern and, incidentally, of the broader aspirations of the Great Society program. But under the federal system in both countries the central governments are limited largely to a role of setting standards, giving advice and information, training personnel, and providing financial assistance for closely defined purposes. It is at the state and local level that essential laws must be enacted and administered, that costs must be paid, and that the political crunch ultimately comes. So a high-level agreement affecting federal governments, such as the one between West Germany and the United States, is, in a sense, another instrument of information and persuasion.—John Walsh

APPPOINTMENTS

J. Frederick Eagle, assistant dean of the College of Physicians and Surgeons, Columbia University, to dean and executive vice president of New York Medical College. . . . Fred C. Davison, vice chancellor of the university system of Georgia, to president of the University of Georgia, Athens. . . . John R. Coleman, program officer in charge of social development, Ford Foundation, to president of Haverford College, Pennsylvania. . . . Samuel E. Braden, vice president of the undergraduate college, University of Indiana, to president of Illinois State University. . . . Theodore Cooper, on leave as professor of surgery, University of New Mexico School of Medicine, to associate director of the National Heart Institute and chief of the Artificial Heart-Myocardial Infarction Program. . . . Samuel B. Weiss, professor of biochemistry at the University of Chicago and the Argonne Cancer Research Hospital, to associate director of the hospital. . . . Shannon McCune, former president of the University of Vermont, to director of the American Geographical Society. . . . Frederic M. Philips, special assistant to the secretary, Department of Commerce, to director of the Office of Public Affairs, Smithsonian Institution. He succeeds Richard Berg, who has become vice president of Lindenwood College, St. Charles, Missouri. . . . James J. Gallagher, associate director of the Institute for Research on Exceptional Children, University of Illinois, to associate commissioner for the education of the handicapped and head of the Bureau of Education for the Handicapped, U.S. Office of Education. . . . Gordon P. Hagberg, director of the Institute of International Education's office in Nairobi, Kenya, to director of the Washington office. . . . John H. Rust, professor of pharmacology, University of Chicago, to director of the university's A. J. Carlson Animal Research Facility. . . . David B. Truman, dean of Columbia College, to vice president and provost of Columbia University: Herbert A. Dean, vice dean of Graduate Faculties, to acting dean of Graduate Faculties at the university; Henry S. Coleman, director of Columbia College Admissions, to acting dean of Columbia College; John Wellington, associate director of Columbia College Admissions, to director of Columbia College Admissions. . . . Warren G. Bennis, professor of organizational psychology and management and chairman of the organizational studies group at Massachusetts Institute of Technology, to provost of the Social Sciences and Administration, State University of New York at Buffalo. . . . John N. Hobstetter, professor of metallurgical engineering and director of the University of Pennsylvania's Laboratory for Research on the Structure of Matter, to the newly established post of vice-provost for research at the university. . . . Aksel A. Bothmer-By, staff fellow, Mellon Institute, to head of the department of chemistry, Carnegie-Mellon University. . . . Walter Lowen, on leave from chairman of the department of mechanical engineering, Union College, to director of the newly established School of Advanced Technology, State University of New York at Binghamton. . . . Earl W. Sutherland, Jr., professor of physiology, Vanderbilt University School of Medicine, to career investigator, American Heart Association.