Physicians entering practice are denied privileges in some hospitals until they belong to the local county medical society. Furthermore, the Joint Commission on Hospital Accreditation is controlled by the AMA, the American Hospital Association, and the American College of Surgeons. Without accreditation, hospitals are not approved for certain types of health insurance care, for federal funds for building (Hill-Harris funds) and are otherwise hampered. In addition, AMA membership is required for certification by some (not all) specialty boards. Thus, for one reason or another, many physicians eventually are forced to pay dues to the AMA in order to fulfill their primary obligation—which is to their patients. (It is well known that the AMA has ample funds for lobbying and public relations and does indeed serve its members well in these and in many other respects, such as group insurance.)

One admirable objective of all this is to maintain high standards of medical practice, but it remains to be seen whether this could be better accomplished by an agency other than the AMA. At present there is little or no control over the quality of medical practice outside hospitals, and little enough inside. A more subtle, less known objective of the AMA has been to protect the economic interests of its members, and in this it has been singularly successful. So, while there are many physicians who might wish to revolt against the AMA, when the chips are down, few will do so.

HERBERT L. JOSEPH
1516 Napa Street, Vallejo, California

The Student American Medical Association, although enjoying a close working relationship with the AMA as well as all other major medical organizations, is in no way financially or politically tied to it as Langer's description "junior AMA" would imply. . . . Langer also implies that SAMA and the Student Health Organizations are in opposition and working at cross purposes. She neglects to mention that the initial national SHO meeting was sponsored by SAMA at the University of Chicago in 1966, that many of the SHO groups are SAMA chapters that have elected to affiliate with both organizations, and that national SAMA has a formal liaison with the SHO. SAMA has indeed been "energized" with respect to community health programs by the impressive efforts of SHO.
in this area, and we have established an ad hoc committee on community health problems to establish similar projects in the areas outside of California, New York, and Chicago where SHO has little representation. In addition, we will continue to represent responsibly our membership of 60,000 medical students, interns, and residents in the areas of evaluation and financing of medical education, international health, house staff salaries, the doctors draft, medical legislation, and any other pertinent concerns.

DAVID A. KINDIG
1424 East 58 Street,
Chicago, Illinois 60637

World Weather Watch

As a member of the U.S. delegation to the congress of the World Meteorological Organization, I found Walsh's article ("World weather watch: meteorologists of the world unite," 16 June, p. 1470) gave a good account of the actions taken to implement plans for the World Weather Watch. Unfortunately in his brief review of the development of the world weather programs, he has used confusing expressions such as "... bringing meteorologists and atmospheric scientists closer together..." and "... the meteorologists need the scientists..." Most of the scientists working on the world weather programs are meteorologists. The World Weather Watch, conceived by the WMO, is under the direction of meteorologists employed by the governmental agencies. The special committee of the International Union of Geodesy and Geophysics and the International Council of Scientific Unions which has been working on the formulation of the Global Atmospheric Research Program also is made up largely of meteorologists. The major goals of GARP and WWW have a great deal in common. The former is chiefly concerned with developing a better understanding of the entire atmosphere. The WWW shares this goal, but also is aimed at improving weather service, particularly weather forecasting. The meteorological scientists involved recognize that success can be achieved only if the available talent is unified in this ambitious and worthwhile undertaking.

LOUIS J. BATTAN
American Meteorological Society,
45 Beacon Street,
Boston, Massachusetts 02108

Tens of thousands of dissertations have been written. That's not news. But we can find the one you want in seconds. That is.

Finding the right dissertation at the right time is a problem. Compiling a bibliography of relevant titles means days—even weeks—of searching. It's a formidable, time-wasting problem for researchers and librarians. Now there's a way that greatly reduces the time needed to put together a bibliography of pertinent dissertations. It's a way to quickly and inexpensively get actual research started sooner.

It's a service named DATRIX.
A computer is the core of DATRIX.
Here's what it does:
It performs a thorough search of the more than 126,000 post-1938 dissertations we have in our files (including 95% of those written last year at U.S. and Canadian universities); retrieves, with computer speed, titles of desired dissertations; and prints out the desired bibliography. Positive microfilm or bound xerographic copies of the complete dissertations can be ordered.

DATRIX is another new service of University Microfilms, a pioneer in making the library a more efficient research tool.
Using DATRIX is simple and direct. With our order form and descriptive words selected from a key-word list supplied, the researcher defines his specific area of interest.
When this request is transmitted to a computer, a bibliography of relevant titles is printed and mailed to the library or individual so that they'll have what they need in working days instead of waiting weeks.

For the DATRIX brochure, write:
University Microfilms Library Services, Xerox Corporation,
300 N. Zeeb Road, Ann Arbor, Michigan 48106.
ELECTROPHORESIS IN ONE DIMENSION

- Easy loading with folding rack
- 5,000 volts at 300 ma.
- Paper immersed in bifurcated fiberglass tank containing Varsol
- Varsol, a light petroleum fraction, has a high flash point (over 100° C.), does not conduct electricity, and has the proper degree of volatility
- Cold tap water run through stainless steel coils at top of tank is only coolant necessary

Safety features:
- Strong, joint-free fiberglass tank eliminates electrical and fluid leaks
- High voltage connected to inside of tank by Nylon and stainless steel plugs attached to edge of tank
- Highly reliable interlock provided by an extension of the cover handle
- When cover is removed, high voltage is ipso facto turned off
- No capacitors to sneakily store electricity in apparatus

GILSON MEDICAL ELECTRONICS
Middleton, Wisconsin 53562 • Telephone 608/836-1551

GILSON products are also manufactured in Europe:
GME • 69, Rue Gambetta — 95, Villiers-Le-Bel, FRANCE
This New Liquid Chromatography Detector System allows direct, quantitative analysis of:

- steroids
- vitamins
- alkaloids
- triglycerides
- polymers
- pigments
- waxes
- fats
- oils

"Pre-flame" pyrolysis provides high sensitivity and sharpens chromatogram peaks

Separation of cholesterol palmitate, triolein and cholesterol using three different solvents.

The Packard Model 7101 Liquid Chromatography Detector System enables you to analyze high molecular weight compounds without the need for time-consuming preparation of derivatives. A unique feature of this new system is Pre-flame Pyrolysis, our patented method of transforming liquid chromatography solutes into a gaseous state before they reach the hydrogen flame detector. The solute sample is carried on a reinforced nichrome helix through a controlled atmosphere furnace where pyrolysis takes place. Because the conveyor does not pass through the hydrogen flame, noise levels are extremely low... sensitivity unusually high.

Your Packard Sales Engineer can give you complete information. Call him, or write for Bulletin 1086U to Packard Instrument Company, Inc., 2200 Warrenville Road, Downers Grove, Illinois 60515, or Packard Instrument International S.A., Talstrasse 39, 8001 Zurich, Switzerland.
barriers to the transfer of molecules, but this mechanism has not been worked out satisfactorily.

The function of the normal and the abnormal placenta needs a great deal more study. Virtually nothing is known of the correlation between abnormalities in the placenta and abnormalities in the fetus. The site of origin of plasma cells and the production of antibodies in the human placenta as determined by biopsy, examination of delivered placentas, or by extrapolation from animal models, have yet to be ascertained.

One of the most promising animal models for human congenital malformations is the baboon. The gross structure of its placenta is comparable to the human. The production of phocomelia with thalidomide in doses similar to that recorded for human beings suggests that some functional aspects of embryogenesis may also be very comparable. The menstrual cycle has been well studied and precise dating of ovulation is relatively easy. Data are accumulating on normal embryogenesis in the baboon with descriptions of all stages from the blastocyst on. During the first 39 days of gestation the embryo appears identical to the human. While a healthy pregnant captive baboon is a relatively expensive, not to say large, experimental animal its disadvantages may well be offset by the possibility of extrapolating to man and by the confidence with which the pathology can be assessed.

DNA viruses may cause congenital abnormality through chromosome damage, such as breakage, rearrangement, nondisjunction or polymerization, in the gamete, in the zygote, and in the fetal somatic cells. This damage appears to begin with loss of contact inhibition of division followed, in a week or two in tissue culture, by a tremendous variation of the genome. None of these alterations are specific to viruses. Furthermore, many chromosomal aberrations appear to be of little moment. A dead skin cell sloughs, most abnormal sperm fail to fertilize, and only the chromosomal abnormalities in the ovum, perhaps, give rise to abnormalities.

Reproductive abnormalities are often best recognized epidemiologically. Using retrospective analyses testing and generating hypotheses, mitotic nondisjunction appears to be one possible common characteristic relating maternal age, increased risk of abortion, Down's syndrome and childhood leukemia. Sophisticated statistical techniques permit the evaluation of the significance of observed clusters of disease in time and in space. Simultaneous occurrence of diseases can suggest common etiologies. It can also permit observation of the onset and development of a disease such as leukemia through the identification of high-risk groups.

In considering any etiologic agent of congenital malformations one must look at the other manifestations of reproductive wastage, abortion, fetal death, and fetal infection. These may occur in the absence of direct fetal involvement, for instance, in response to change in placental function.

In the face of the hundreds of presently known viruses, potentially capable of producing teratogenic effects, precise identification of the genetic, chemical or physical mode of action of known viral teratogens would greatly assist in the identification of high-risk agents for epidemiologic and laboratory investigations. It is apparent that many different disciplines must contribute information and that new methods must be developed in seemingly unrelated fields before there will be any real breakthroughs in identifying and understanding viral etiologies of congenital malformations.

SHIela C. MITCHELL
National Heart Institute,
Bethesda, Maryland

GILBERT L. WOODSIDE
National Institute of Child Health and Human Development, Bethesda

Calendar of Events

Courses

Modern Developments in Low Speed Aerodynamics with application to VTOL. Tullahoma, Tenn., 25 Sept.–6 Oct. Fee: $300. Deadline: 18 Sept. (Director, Continuing Education, Univ. of Tennessee Space Institute, Tullahoma, Tenn. 37388)

Applied Transducer Workshop. Hopatcong, N.J., 30 Oct.–3 Nov. Instruction in instrumentation and process transducer performance, design, and application. Fee: $200. (Dr. S. D. Black, Center for Professional Advancement, P.O. Box 66, Hopatcong 07843)

Research and Development Management, Columbus (1st week) and Athens (2nd week). Ohio, 24 Sept.–6 Oct. For scientists and engineers with managerial responsibilities. Limited to 65 participants. (Director, Center for Management Development, College of Business Administration, Ohio University, Athens 45701)