What price signal averaging?

Here's a quick look at the real expense—in data as well as dollars—of signal-averaging devices, including our averager, the Model 7100 Data Retrieval Computer.

Will you pay for less than excellent resolution? You will in any signal averager that has a minimum dwell-time per data point of more than 39 microseconds. Resolution, after all, is a function of the number of data points that can be placed within a region of interest. Our Model 7100 Data Retrieval Computer (DRC) uses all 400 of its data points for signals occurring within as little as 15.6 milliseconds. The DRC, therefore, gives much better resolution than averagers that use only a fraction of their data points to represent the signal of interest.

Will you pay for less than total versatility? You will in any averager that doesn't have the built-in capability—without add-on options—for interval- and time-histogram analysis, as well as transient-averaging. The DRC will operate in any of these three modes, which are selected on a front-panel switch.

Will you pay for less than maximum input sensitivity? You will in any averager that needs a pre-amplifier to accept low-amplitude input signals. The DRC has 20-millivolt input sensitivity. So, most of the time, the DRC requires no added pre-amps.

What should you pay for a basic signal averager? That's up to you. But for its price, the DRC offers you more performance, versatility, and convenience than any other comparable signal averager.

The Model 7100 Data Retrieval Computer. Now available at a new, lower price.

For more information, consult your local Nuclear-Chicago sales engineer or write to us.

Nuclear-Chicago Corporation
249 E. Howard Ave., Des Plaines, Ill. 60018 U.S.A.
Donker Curtiusstraat 7, Amsterdam W.

varied, complex, rich. It remains only to answer the objections posed by many skeptics.

Objection 1. Only natural phenomena breed sciences, but computers are artificial, hence are whatever they are made to be, hence obey no invariable laws, hence cannot be described and explained. **Answer.** 1. The objection is patently false, since computers and computer programs are being described and explained daily. 2. The objection would equally rule out science large portions of organic chemistry (substitute “silicones” for “computers”), physics (substitute “superconductivity” for “computers”), and even zoology (substitute “hybrid corn” for “computers”). The objection would certainly rule out mathematics, but in any event its status as a natural science is idiosyncratic.

Objection 2. The term “computer” is not well defined, and its meaning will change with new developments, hence computer science does not have a well-defined subject matter. **Answer.** The phenomena of all sciences change over time; the process of understanding assures that this will be the case. Astronomy did not originally include the study of interstellar gases; physics did not include radioactivity; psychology did not include the study of animal behavior. Mathematics was once defined as the “science of quantity.”

Objection 3. Computer science is the study of algorithms (or programs), not computers. **Answer.** 1. Showing deeper insight than they are sometimes credited with, the founders of the chief professional organization for computer science named it the Association for Computing Machinery. 2. In the definition, “computers” means “living computers”—the hardware, their programs or algorithms, and all that goes with them. Computer science is the study of the phenomena surrounding computers. “Computers plus algorithms,” “living computers,” or simply “computers” all come to the same thing—the same phenomena.

Objection 4. Computers, like thermometers, are instruments, not phenomena. Instruments lead away to their user sciences; the behaviors of instruments are subsumed as special topics in other sciences (not always the user sciences—electron microscopy belongs to physics, not biology). **Answer.** The computer is such a novel and complex instrument that its behavior is subsumed under no other science; its study does not lead away to user sciences, but to further study of computers. Hence, the computer is not just an instrument but a phenomenon as well, requiring description and explanation.

Objection 5. Computer science is a branch of electronics (or mathematics, psychology, and so forth). **Answer.** To study computers, one may need to study some or all of these. Phenomena define the focus of a science, not its boundaries. Many of the phenomena of computers are also phenomena of some other science. The existence of biochemistry denies neither the existence of biology nor of chemistry. But all of the phenomena of computers are not subsumed under any one existing science.

Objection 6. Computers belong to engineering, not science. **Answer.** They belong to both, like electricity (physics and electrical engineering) or plants (botany and agriculture). Time will tell what professional specialization is desirable between analysis and synthesis, and between the pure study of computers and their application.

Computer scientists will often join hands with colleagues from other disciplines in common endeavor. Mostly, computer scientists will study living computers with the same passion that others have studied plants, stars, glaciers, dyestuffs, and magnetism; and with the same confidence that intelligent, persistent curiosity will yield interesting and perhaps useful knowledge.

The Big Trouble with Scientific Writing . . .

When I see articles, as I frequently do these days, exhorting authors to greater simplicity and clarity (1), I think of the first little scientific note I wrote, when I was an idealistic graduate student. I wrote it as simply and directly as I could. It began, "The big trouble with diffusion cloud chambers is low radiation resistance," and it went on in the same vein. My co-workers thought it needed a little more work. Secretly I did not agree, so I decided to attempt to make it into a parody of
The most important tip on the Zeiss Electron Microscope EM 9A is your fingertip. With it, you can activate time-saving automation never before possible.

Your fingertip gives you complete control of the error-free, automatic vacuum system which saves time during start-up and shut-down.

A flip of your fingertip is all it takes to activate a completely automated photomicrographic system that sets correct exposure, takes the picture, numbers micrographs sequentially and neatly stacks up to 75 negatives without reloading.

You save still more time in several other ways. Alignment is exceptionally fast and stable with the EM 9A's new adjustable single condenser that gives 15 to 20 times more brightness than was possible before.

Specimen airlock is not only fast, but foolproof, too. Specimen exchange can be made within 10 seconds.

Which all adds up to more time to concentrate on microscopy... rather than on the microscope.

The EM 9A's resolving power: 10-12Å. Operating range: 900x-40,000x. Astigmatism compensation: new, easy-operating electrostatic stigmator. Focusing: easy, because the unique fine-focusing device with digital read-out combines advantages of both step and continuous focusing. Binocular: 10x with exceptionally high light transmittance; special high-eyepoint eyepieces for people who wear glasses.

For more information, write Carl Zeiss Inc., 444 Fifth Ave., New York, N. Y. 10018. Complete service facilities available.
scientific writing. I borrowed impres-

sive but empty phrases from The Re-

view of Scientific Instruments. Each

sentence and each idea was made un-

necessarily complicated, without being

too obvious about it. The result be-
gan. “The principal difficulty encoun-
tered in the operation of an ordinary

high-pressure hydrogen cloud cham-
ber is inferior radiation resistance.”

I failed in my attempt, for now every-
one thought it read fine, and it ap-

peared in its complicated form in

The Review (2).

My point is not that scientific write-
ing cannot be parodied, but rather

that scientific writing is the way it is

because its readers actually prefer it

that way. People’s actions do not al-

ways correspond to their words. Ev-
e

one is against sin and bad writing,

unless given a free choice.

ROBERT H. GOOD
Department of Physics, California
State College, Hayward 94542

Reference

Role of Intuition

In much recent writing about sci-
ence and scientific discovery a strong

distinction is purported to exist be-
tween intuition and ostensive logical

argument. Some authors attribute to

intuition a special quality giving its re-

sults a status almost as though ex

cathedra. In their view, intuition is

such that scientific advance is made

only on intuitive process while the ex-

ercise of intelligence and logic are

pedestrian activities of which the re-

sult is merely a confirmation of that

which was in the first instance ac-

cessible only to intuition.

Wilder’s article, “The role of intui-
tion” (5 May, p. 605), establishes a

more reasonable perspective. His argu-

ment that “mathematical intuition, like

intelligence, is a psychological quality

which stems possibly from a heredit-

arily derived faculty, but which is, at

any given time, principally an accumu-

lation of attitudes derived from one’s

mathematical experience,” supports a

view that intuition is logical process

unobserved.

In brief, intuition is an act of the

mind, in nonverbal apprehension of

significant relation. The quality of such

acts is a function of the quality of

C

NUCLEAR-CHICAGO
CORPORATION
A SUBSIDIARY OF G. O. SEARLE & CO.
349 East Howard Avenue, Des Plaines, Illinois 60018

Please send me your 67/68 Radiochemical Catalog.

Name ____________________________
Title ____________________________
Organization ______________________
Address __________________________
________________ City State Zip

CONCENTRATE & DESALT FAST!

A new family of equipment based on a

unique principle lets you concentrate and
desalt aqueous solutions of large molecules
many times faster than other techniques.
Electro-osmosis with a special electrolyte
pulls water and low-MW ions through dial-
ysis membrane at rates so fast you can
take a 45 ml sample almost to dryness and
zero salt in half an hour with the con-
venient “Start Kit” (pictured below).

The Start Kit, intended to introduce you to

the technique, costs just $90.00 delivered
to any point in the U.S. or Canada. Now
available for immediate shipment, it comes
complete with all parts (including power
supply) and chemicals. It accommodates
a single sample cell holding up to 60 ml
or 3 cells holding up to 10 ml each, and can

• concentrate at rates up to 1.5 ml per

minute water removal;

• desalt from 3% ammonium sulfate down
to 1/100% in half an hour.

Gentle low-temperature action gives typical
enzyme activity recovery of better than
80% after 80-fold concentration!
The Start Kit will fully satisfy the require-
ments of some users, and will demonstrate
the technique’s utility to others who need
higher capacity for routine use. Larger units
for multiple aliquots (up to 45), and for
homogeneous samples up to dozens of liters,
will soon be available. Other apparatus will
permit filtering, fractionating, washing and
sterilizing, all enhanced by electrophoretic
phenomena. Descriptive literature is avail-
able on all equipment. Order your Start Kit
now. Discover a pow-
erful new way to

speed your work.

Canalco Industrial Corporation
5635 Fisher Lane
Rockville, Maryland 20852
Telephone (301) 427-1515
Protests Unexpected Editorial Changes

Science editors introduced five changes into my recent letter ("Basic research and public support," 14 July 1967), all without my knowledge; they altered the title and my address (although trivially), added the word "so" (creating the tautology "sufficiently so"), reworded the last sentence and deleted its final phrase, "as effectively as it can be done," and added!) the question whether biochemists can decide if biological systematists are competent, and vice versa (I asked whether either of these kinds of investigators can decide that the other field is wholly a waste of time, and therefore everyone in it by definition incompetent; the answers to the two questions are not the same). It says one's confidence to realize he cannot control what he says in print, even in a brief letter to a magazine called Science.

RICHARD D. ALEXANDER
Museum of Zoology, University of Michigan, Ann Arbor 48104
Is amplifier noise your problem? Solve it with "low-uncertainty" Philbricks

...one of these 19 is exactly right for your circuit

Would you like your Operational Amplifiers offset-stabilized? Mechanical Chopper?...Photochopper?...Solid-State chopper?...Parametrically Modulated RF Carrier?...Temperature-Compensated or FET front-end? Bring your needs to Philbrick. We've got 19 standard, stock-model price/performance combinations. One of these optimized designs is best for your application. Because we make the complete range, we won't ask you to buy a more expensive amplifier than you need; nor will we ask you to get along with inadequate performance margins. Bring your needs to Philbrick. We offer engineering objectivity you can't expect elsewhere. If we can't satisfy your requirements off the shelf, we can probably do so by selection from, or modification of, a standard production type. If we can't do that, we may be able to build you a custom unit. If we can't give you what you want, start worrying...You may be too far ahead of the state of the art.

Send for new Operational Amplifiers price list and 12-page brochure: Bulletin 6111. Philbrick Researches, Inc. 25-S Allied Drive at Route 28, Dedham, Mass. 02026. Phone: (617) 329-1600; TWX: (617) 326-5754.

ELECTRONIC ANALOG COMPUTING EQUIPMENT for MODELLING, MEASURING, MANIPULATING and MUCH ELSE
Our message is simple. When you want a laser to work with, not on, get one built by the TRG Division of Control Data Corporation. These rugged, modular-constructed units deliver maintenance-free operation. Function selection is simple... flashlamp replacement requires no realignment of optics... service, when needed, is unmatched in the industry. Care to hear the rest of our story? Contact: TRG Division of Control Data Corporation, 535 Broad Hollow Road, Melville (Long Island), New York 11746. Phone (516) 531-6343.
scription of his scientific work in relation to that of predecessors, contemporaries, and successors. The most satisfactory articles will lead the reader to think through the problems and to understand them in relation to the state of scientific knowledge then and now. A carefully established selective bibliography should conclude each piece."

Each biography will be in one of four categories which will be determined by the editorial board prior to assignment to an author. Class A articles will consist of pieces ranging from 300 to 700 words. Scientists who fall into that category include Miguel Serveto, a 16th-century scientist who mentioned, in the course of a theological discussion, that some blood passes from the right to the left ventricle of the heart by way of the lungs, and Sir Christopher Wren, the 17th-century architect who was also a mathematician. Class B articles will range between 700 and 1300 words. Scientists covered in that class will include the 18th- and 19th-century French researchers, Guyton de Morveau, a chemist, and Francois Magendie, a physiologist. Class C essays will run from 1300 to 3600 words, and Class D from 3600 to 10,000 words. Examples of scientists to be covered in Class C are Hooke, Bernard, and Franklin. Archimedes, Einstein, and Newton will be included in Class D.

Gillispie and his nine associate editors have been responsible for all editorial decisions. The associate editors are all specialists in various fields of the history of science. Editorial board members are: Carl B. Boyer, Brooklyn College; Marshall Clagett, Institute for Advanced Study, Princeton; Erwin N. Hiebert, University of Wisconsin; Thomas S. Kuhn, Princeton University; Robert Mulhauf, the Smithsonian Institution; A. I. Sabra, University of London; Cecilia J. Schneer, University of New Hampshire; Leonard G. Wilson, University of Minnesota, and Harry Woolf, Johns Hopkins University. The managing editor is Marshall DeBruhl, a professional editor employed by Scribner's.

The first volume, covering Peter Abaillard through Maurizio Bufalini, is scheduled for publication sometime in 1968. A Scribner's spokesman said estimates for the price of the complete set of volumes has varied between $200 and $700, but no firm figure will be established until all articles are in and volume one has gone to press.

—KATHLEEN SPERRY

APPPOINTMENTS

Byron L. Youtz, the acting President of Reed College, has been appointed academic vice president of the recently created State University College of Old Westbury in Nassau County, New York. Youtz will be taking up his new position in June of 1968.

Robert B. Duffield, assistant director of the John Jay Hopkins Laboratory of the General Atomic Division of General Dynamics Corporation, San Diego, to director of the Argonne National Laboratory.

Appointed by NASA as scientist-astronauts are the following:

Joseph P. Allen, physicist, University of Washington; Philip K. Chapman, physicist, Experimental Astronomy Laboratory, M.I.T.; Anthony England, graduate fellow in geophysics, M.I.T.; Karl G. Henize, professor of astronomy, Northwestern University; Don ald L. Holmquest, doctoral candidate in physiology, Baylor College of Medicine; William B. Lenoir, assistant professor of electrical engineering, M.I.T.; John A. Lewellyn, associate professor of chemistry, Florida State University; Franklin S. Musgrave, postdoctoral fellow, University of Kentucky; Brian T. O'Leary, astronomer, University of California; Robert A. Parker, assistant professor of astronomy, University of Wisconsin; and William E. Thornton, former Air Force flight surgeon.

A. Adrian Albert, dean of the Division of Physical Sciences, University of Chicago, to chairman of the Consultative Committee which will plan the International Mathematical Union's 1970 International Congress of Mathematicians. . . . Alexander M. Schmidt, assistant dean, University of Utah College of Medicine, will extend his leave to become chief of the Continuing Education and Training Branch, Division of the Regional Medical Programs, NIH. . . . Robert W. Ramsey, Jr., chief of the Technical Policy Branch, Division of Operations Analysis and Forecasting, AEC, to scientific representative, AEC, Chalk River, Canada. . . . Roderick O. Middleton, deputy director of mission operations, Office of Manned Space Flight, Washington, D.C., to Apollo program manager, Kennedy Space Center. . . . John Napier, University of London, to Smithsonian Institution to examine the feasibility of establishing an International Center for the Study of Primate Animals. . . . Bogdan Maglic, CERN, to visiting professor, department of physics, University of Pennsylvania. . . . Richard T. Loutitt, chief, neuropsychology section, Behavioral Sciences Research Branch, NIMH, to acting chief of the Behavioral Sciences Research Branch, Division of Extramural Research Programs, NIMH. He succeeds Philip Sapir, who has become assistant dean, Albert Einstein College of Medicine. . . . Melvin Frey, professor of physiology, University of Florida, to assistant dean for graduate studies at the university. . . . Joseph C. Olson, Jr., professor of bacteriology, University of Minnesota, to director of the Division of Microbiology, FDA. . . . Charles M. Cameron, Jr., on leave from the position of professor of public health administration, University of North Carolina School of Public Health, to the Department of Administration, State of North Carolina, to begin the coordination of a comprehensive health planning program for the State of North Carolina. . . . Milton C. Kloetzle, interim vice president for academic affairs, University of Southern California, to vice president for research and graduate affairs, at the university. . . . Jerome Lederer, on leave from director, Cornell-Guggenheim Aviation Safety Center, to director of safety, Office of Manned Space Flight, NASA N. G. Van Kampen, Institut voor Theoretische Fysica der Rijksuniversiteit, Utrecht, Netherlands, to visiting professor of physics, Howard University during the fall semester 1967–68. . . . Jack Zfaffan, head of the department of experimental psychology, Lovelace Foundation for Medical Education and Research, to professor of psychology, University of Southern California. . . . Miller J. Tonkel, chief, Continental Shelf Coordinating Group, ESSA, to associate director of the Office of Hydrography and Oceanography, Coast and Geodetic Survey, ESSA.

Erratum: Annual subscriptions to Communications in Behavioral Biology are $45 for the original articles and $18 for the abstracts, rather than as previously reported. (8 Sept., p. 1149). Subscriptions should be sent to Academic Press, 111 Fifth Ave., New York 10003.

Erratum: In the report "Induction of drug-metabolizing enzymes in liver microsomes of mice and rats by softwood bedding" by Elliot S. Vessell (1 Sept., p. 1057), the last sentence in the table head (Table 1) should read "All differences are significant (P < .01)."

1418

SCIENCE, VOL. 157
drate bonding in plants, and the uses of commercial lignin products.

The author's familiarity with and attention to both the scientific and technological accomplishments in this difficult field will make his volume useful not only as a reference work but as a textbook; it should be appreciated by lignin investigators in both the academic and industrial spheres.

JOHN M. HARKIN
Forest Products Laboratory,
U.S. Department of Agriculture,
Madison, Wisconsin

Parts and Wholes in Biology

This multi-author volume contains eight essays which were presented as a lecture series at the University of Michigan in the spring of 1965. Thus from the start the reader faces the twofold disadvantage of a substantial publication lag (which is of considerable significance for some of the fast-moving areas reviewed here) and the discontinuities in style, approach, and orientation which often afflict books written by several authors. Moreover, similar treatments of the same subjects, often by the same authors, have appeared elsewhere. So why this book?

In my opinion its chief value lies in the collection of these essays into one small volume which can be read as a unit. For the "vertical sectioning" of molecular biology which this book as a whole represents drives home forcefully the basic notion that while cellular organelles and structures are made of molecules, the functions of these multi-molecular structures are often much more than the sum of their unorganized molecular parts. Yet it is also clear that the parts contain within them the implicit interaction potentials needed to bring about, under appropriate conditions of environment and perhaps sequential availability of components, the self-assembly of the whole into a functional array.

This theme is clearly stated in the editor's preface and can be traced through the book by the appropriately oriented reader. The book opens with a discussion by Anfinsen on the "self-structuring" of protein conformations on the basis of information contained in the amino acid sequence, followed by a review by Rich on the mechanisms whereby the nucleotide triplets of DNA are transcribed onto messenger RNA and then translated into sequenced polypeptide chains. Anderson then deals with the simplest type of multimolecular self-assembled system, represented by the bacteriophage, in which the whole is already much more than the sum of its parts. From here things become progressively more complex, and these complications correlate (of necessity) with a progressive loss of focus on the details of the molecular structure which is presumably responsible for the ever more complex edifices described: first Robertson on cell membranes, then Lehninger on mitochondria, Bogorad on chloroplasts, Dowling on visual receptors, and Gibbons on cilia and flagella.

The chapters are uniformly well written and profusely illustrated and provide something of value for each reader, be he a beginning student just becoming acquainted with molecular biology or a full-time research worker in one of the fields under discussion. However, it is likely that only the latter class of readers will be able to wring dry some of the more complex chapters.

But I hope that most readers will go through the entire book, for only in this way does the impact implicit in its organization come through. Both students and practicing investigators whose major interests fall on various parts of the spectrum of complexity presented here should be impressed and sobered: the molecular people with what an incredibly delicate balance of forces must be sorted out to "explain" the self-assembly of the complex structures from their constituent macromolecular parts, and the morphological people with the many levels of interacting organization which still remain to be fathomed before the beautiful structures they look at can be considered to be "understood."

It is a pity that even the paperback version of this book is expensive, since it is the sort of work that, if read by students, could help prevent the development and hardening of the "black boxes" which are often built around certain areas of subject matter as a consequence of the "horizontal" organization of many of our classical courses and research disciplines.

PETER H. VON HIPPEL
Department of Biochemistry,
Dartmouth Medical School,
Hanover, New Hampshire

Books Received

Sargent's portable pH meters are rugged enough—with transistorized circuitry in a shockproof, waterproof case—to withstand rough field use. Yet these portable pH meters—with an absolute accuracy of ±0.05 pH and reproducibility of ±0.01 pH—perform to standards normally found in only the highest-priced instruments.

There are two models of these pH meters to choose from. Both use the same instant-response taut-band suspension and differ only in their plug-in power packs.

The Model PB uses mercury dry-cell batteries that normally give six months of operation. The Model PL has a zener-referenced, line-operated power supply. These power packs are interchangeable, which is why you can use the PB or PL almost anywhere.

Both the PB and PL pH Meters are easy to read to 0.02 pH on a large meter face. Both have only three operating controls: standardization, operation, and temperature compensation. And both will accommodate all commonly used electrodes.

These portable pH meters are designed and manufactured by E. H. Sargent & Co., so you know you can count on their performance to be ultra-reliable. The Model PB (battery-operated) is priced at $265. The Model PL (line-operated) costs $305. The Interchangeable power packs are priced at $25 for the battery kit and $65 for the 115/230 vac, 50/60 cycle supply.

Please call your Sargent man or write us for a demonstration of the PB or PL Portable pH Meter.

In the field or in the lab. Sargent's PB/PL pH meters work anywhere.
For the Latest Thinking on Information Retrieval

Proceedings of the Fourth Annual... National Colloquium on Information Retrieval
Theme: The User's Viewpoint, An Aid to Design

Featuring expert discussions on:
- User reaction as a design tool
- Design of a general purpose data management system
- User defined syntax in a general information storage and retrieval system
- A general purpose Fortran system for file maintenance, retrieval and formatting
- An information retrieval system for the inexperienced or experienced user
- Query language for the reactive catalogue
- Development of random access retrieval
- What authors and editors can best do to assist information systems
- Interaction between the user and the retrieval system
- Full text searching: an effectiveness study
- Semi-automatic user controlled search strategies
- Using an advisory panel in designing and modifying an information system
- New areas of application for information retrieval

This timely volume presents papers delivered at The Fourth Annual National Colloquium on Information Retrieval, May 1967. Approx. 311 Pages

Order Your copy Today! $12.00

WE BUILT A BETTER MOUSE CAGE—so you could throw it away!

DISPOSABLE MOUSE CAGE
The most economical, most convenient laboratory mouse cage!
Nest these self-standing, escape-proof disposable cages. After completing your test, just lift off and discard the used cage and continue testing with the clean cage nested below. Used cage is easily incinerated. You never have to clean a mouse cage again!

Priced as low as 22¢ each in contract quantities.

STARTER SET, Cat. No. 9000
Try this Introductory Kit for proof of economy: 10-Disposable cage bottoms; 5-Disposable supports; 5-each: metal tops and food hoppers, water bottles with stoppers and tubes.

All for only $24.50
Order Today!

Patented

Cages are shown nested and self-standing, but disposable, or permanent metal cage supports are available, also.

Developed by the Design and Microbiology Departments of Southern Illinois University, Carbondale, Illinois

ORIGINATORS of the WORLD'S FIRST AND ONLY DISPOSABLE MOUSE CAGES

LAB-LINE LABORATORY CAGES, Inc.
BioScience Division/Lab-Line Instruments, Inc.
LAB-LINE PLAZA • MELROSE PARK, ILL.

22 SEPTEMBER 1967
communications as they relate to the patterns of associations and organization of cells into well defined structures. Dissociated skin cells of 8-day-old embryonic chicks, when placed in the chorioallantoic membrane, will form feathers. Older cells (12 to 14 days) will only form keratinized structures but no feathers. If skin cells are mixed with a heterologous population (liver, lung, kidney, or heart cells), the formation of feathers is completely suppressed, thus suggesting an incompatibility between different phenotypes. Moscona also studied interactions between cells of different genotypes, namely, skin cells of chicks and mice. When a mixture of skin cells (capable of forming hair follicles) from a 13-day-old mouse and embryos (capable of forming feathers) of 8-day-old chicks was placed in the chorioallantoic membrane, the following structures were produced: (i) feathers and hair follicles, (ii) sheets of cysts from either chick or mouse cells or chimeric mosaics with epidermal cells from both species, and (iii) feathers with mouse epidermal cells. On the other hand, chick epidermal cells never participated in hair follicle formation. When mouse epidermal cells (dermis removed by trypsinization) were mixed with total chick skin cells, their behavior was similar to that described previously. In addition, there were downgrowths of mouse epidermis attempting to form hair follicles which were associated with condensations of chick dermal cells, thus suggesting that induction was taking place with these genotypically different cells. When chick skin cells were mixed with epidermal or dernal mouse cells 13 days old, there was no interference with feather formation. However, if the mouse cells were older than 14 days, feather formation by the chick skin cells was suppressed. The author concluded that 14-day-old mouse skin cells have already established their phenotypic specificity so that they cannot participate in functions programmed in a different genotype.

The formation of interface materials during epithelial-mesenchymal interactions and their possible role in morphogenesis was discussed by Clifford Grobstein (University of California). When epithelia interact with mesenchyme through a Millipore filter, collagen fibers accumulate at the surface of the epithelium. Removal of the collagen fibers by collagenase seemed to interfere with epithelial morphogen-
can you afford to order radioactive compounds nuclides sources and services without Tracerlab’s Catalog 68?

Honeywell’s new W809 Relative Humidity and Temperature Meter is a precision instrument. Accurate to ±2% RH; linear scale with a complete range of 7%-95% RH. Large 4½” mirrored scale for easy accurate reading. Accurate to ±1°F through a temperature range of 20°-120°F utilizing resistance thermometer sensing. RH sensor is integrated with resistance thermometer for automatic temperature compensation. Sensor can be attached to spring-loaded extension handles for reaching high places. Completely portable. Operates on rechargeable batteries in the field, or from the line in a laboratory. Compact, lightweight, attache-type carrying case of anodized aluminum. Case converts to self-contained easel stand. Solid state construction. A true laboratory-type instrument, which is rugged enough to stand hard work in the field, at an economical price. To order or for more information call the Industrial Sales Manager at your nearest Honeywell office. Or write: Honeywell, Apparatus Controls, Minneapolis, Minn. 55408.

Write for it now

Honeywell

HONEYWELL IS WORLDWIDE: Sales and service offices in principal cities of the world.
Omacide is a biocidal maniac.

And we planned it that way.

Our Omadine" and Omacide™ biocides are probably the most potent antibacterial/antifungal agents commercially available today.

In minute quantities both will attack virtually every form of bacteria or fungi going, or coming. And considering the increasingly resistant strains of microorganisms coming, that's saying a lot.

What's more, their toxicity is very low; they are odorless; and they are readily compatible with a broad range of other chemicals.

To find out what biocidal maniacs like our Omadine and Omacide broad spectrum antibacterial/antifungal agents can do for you, just complete the coupon.

Olin CHEMICALS

Olin Mathisso Chemical Corp.
Department O-21
745 Fifth Avenue
New York, New York 10022

Gentlemen:

I'd like to evaluate OMADINE and the related family of OMACIDE products. Please send me technical literature.

Have a representative call me. My phone number is ___________________________

So that you can determine the specific OLIN biocide that is best for my use, I attached a description of my biocide application and/or problem:

Name ___________________________

Title ___________________________

Firm ___________________________

Address ___________________________

City State Zip ___________________________

Omadine® and Omacide are trademarks of OMCC.

Omacide

Onmacide

Onmacide

An Introduction to Digital Logic

especially written for the non-engineer

Write for a complimentary copy of Bits-of-Digi.

Fifty pages of well diagrammed, uncomplicated, valuable information explaining solid state digital logic.

The 50 page manual Bits-of-Digi is an outgrowth of a continuing BRS program to introduce researchers to solid state, digital logic applications. For almost two years, BRS has been conducting 3-day, complimentary, short courses for researchers, introducing them to the simplicity of digital logic packages for event programming, recording, and analyzing data. Bits-of-Digi follows the same pattern as a sort of do-it-yourself introduction. Through illustration, narrative and diagrams, the reader can gain valuable comprehension of circuit construction and a vocabulary of the "languague." Bits-of-Digi approaches the subject from a non-engineer, research viewpoint. It is very basic. But, with a little diligence, a lot can be learned. What is an "AND GATE" or a "FLIP FLOP"... how do you set up a "RING COUNTER" or an "INTER-EVENT TIME RECORDING circuit? YOu'll learn to read and draw logic diagrams. This manual will undoubtedly become a well-used reference tool whenever you're talking digital systems with engineers or researchers.

If you'd drop us a line on your letterhead, we'll be happy to send along a copy of Bits-of-Digi with our compliments. We hope you'll find it useful and helpful. We ultimately hope you find the world of special-need digital logic programming so simple and so versatile you'll put BRS solid state digital equipment to work in your laboratory.

DEPT. 555

BRS electronics®

5451 HOLLAND DRIVE
BELTSVILLE, MARYLAND

SCIENCE, VOL. 157
inary studies indicated that the thymus from the AKR mouse is more effective in stimulating lymphopoiesis in bone marrow than the thymus from nonleukemic lines \((C_3H)\). Since mesenchymal influences are responsible for thymus lymphoid differentiation, Auerbach raises the question as to whether leukemogenic changes may have occurred through an inductive affect of altered mesenchymal cells.

Sister Muriel Lippman (Nazareth College) is primarily concerned with the effect of natural acidic glycosaminoglycans in cell division. In her earlier work, she showed that heparin reduces mitotic index and tumor growth in Ehrlich ascites carcinoma. Several acid mucopolysaccharides were tested for their ability to reduce growth of mouse L-cells in suspension cultures. All of them including hyaluronic acid, chondroitin sulfate, dermatan sulfate, heparitin sulfate, keratan sulfate and heparin acted as inhibitors of growth in varying degrees. Since most acid mucopolysaccharides in vivo are bound to a protein, a protein-polysaccharide complex \((PP-L)\) obtained from bovine nasal cartilage was tested for its inhibitory effect on growth. The PP-L complex contains about 90 percent chondroitin-4-sulfate and about 10 percent of keratan sulfate. Both polysaccharides have marked inhibitory effects on growth. The results of this experiment were rather intriguing since the PP-L complex showed an initial marked stimulatory effect on growth rate, followed later by an inhibitory effect. Such results suggest that the protein fraction of the complex was already metabolized and let the free polysaccharide exert its inhibitory effect. Sister Lippman also showed that the polyanion polysaccharides are bound to the cell surface. In this regard, Ehrlich ascites cells treated with hyaluronic acid or heparin, and untreated controls, were injected into allogeneic or syngeneic hosts. While the untreated cells were promptly rejected, the treated ones developed into enormous tumors which metastasized and were transplantable. This suggests that the treated cells coated by the test material were not recognized as foreign by the host and consequently not rejected.

Ruppert E. Billingham (University of Pennsylvania) discussed the preservation of epithelial specificity through mesenchymal influences. A series of heterotypic recombination grafts from guinea pig skin (that is, epidermis from

Effective, low cost isolation with new Econo-Filter System

New Econo-Filter System effectively isolates laboratory animals from airborne contaminants such as viruses, insects, dust, etc....helps prevent infantile diarrhea. It also affords protection against sharp temperature changes and drafts.

Ingeniously simple design provides maximum visibility of animals, fits all standard plastic mouse cages without use of special adaptors, has ample room for an upright water bottle. And this is the lowest cost system available today. Costs just pennies a day to maintain.

TWO MORE NEW PRODUCTS FROM THE LEADER IN THE FIELD OF PLASTIC CAGES

ECONO-CAGE RACK—#111 Stationary, #112 With Casters—Ideal whenever economical racking is called for, very useful for separating “hot” or contaminated studies, for temporary projects, or for sheer economy. A complete Econo-Cage System—consisting of one rack, 48 disposable Econo-Cages, and 24 Econo-Lids—can be set up for less than $100.00.

8D SERIES ECONO-CAGE—A larger cage \((19\" \times 10\frac{1}{2}\" \times 6\frac{1}{6}\") for use with either mice or hamsters. Meets ILAR and Public Law 89-544 standards. Same high quality construction found in our other seven series of cages. In polycarbonate, polyp propane, or acrylonitrile.

Call your Econo-Cage Distributor for full particulars, or write for our new catalog.

SCIENTIFIC DIVISION

MARYLAND PLASTICS, INC.

9 EAST 37TH STREET, NEW YORK, N.Y. 10016

SCIENTIFIC DIVISION

MARYLAND PLASTICS, INC.

9 EAST 37TH STREET, NEW YORK, N.Y. 10016
Dissymmetries

LIGHT SCATTERING OF BIOPOLYMERS

Looking for a suitable topic for this column, we flipped through the subject index for the year 1966 (Vol. 5) of "Biochemistry," monthly published by the American Chemical Society. Under "Light scattering," there were six papers mentioned, the authors, titles, and references of which were as follows:

(a) M. D. Stern (p. 2558), On the Estimation of Molecular Dimensions and Shape of Rigid, Asymmetric Macromolecules from Hydrodynamic Measurements.

(b) K. Banerjee and M. A. Lauffer (p. 1957), Polymerization—Depolymerization of Tobacco Mosaic Virus Protein, VI. Osmotic Pressure Studies of Early Stages of Polymerization.

(c) H. T. Miller and R. E. Feeney (p. 952), The Physical and Chemical Properties of an Immunological Cross-Reacting Protein from Avian Egg Whites.

(d) D. B. Millar and R. F. Steiner (p. 2289), The Effect of Environment on the Structure and Helix-Coil Transition of Soluble Ribonucleic Acid.

(e) P. S. Sarfare, G. Kegeles, and S. J. Kwon-Rhee (p. 1389), Relationship between Active Sites and Polymerization Sites in α-Chymotrypsin.

(f) E. Chiancone, M. S. Bruzzesi, and E. Antonini (p. 2823), Studies of Dextran and Dextran Derivatives. X. The Interaction of Dextran Sulfate with Lysozyme.

The first paper listed above deals with some theoretical aspects of the evaluation of the lengths of different models for the rigid asymmetric macromolecules. A comparison has been made with the lengths derived from the radius of gyration as measured by light scattering. Such a comparison offers a possibility of distinguishing between different models, for paramyosin, light meromyosin, tropomyosin B, and tobacco mosaic virus were discussed.

Paper (b) presents mostly the osmotic pressure results of the polymerization of the protein moiety of the tobacco mosaic virus. Some light scattering measurements by means of the transmittance technique were also made and compared with the osmotic pressure data.

The other four papers describe, among other information, the results of light scattering investigations, in all of which the reference is Phoenix light scattering photometers with horizontal geometry. In addition to the usual molecular weight determination, the interactions of biopolymers and small ions and molecules, as well as the interaction of biopolymers with other biopolymers were explored by means of light scattering. Miller and Feeney (c) of the Department of Food Science and Technology, University of Davis, California, found for the molecular weight of an immunologically cross-reacting macroglobulin in chicken egg white a value of approximately 8 \times 106, in agreement with the value obtained from sedimentation-diffusion.

The influence of magnesium ion, neutral salt, and ribonucleotide concentration on the molecular weight of soluble ribonucleic acid (s-RNA) was studied in paper (d). Millar and Steiner at the Naval Medical Research Institute, Bethesda, Md., s-RNA exhibits a polyelectrolyte behavior as evidenced by the effect of the ionic strength of the medium on the apparent molecular weight. A molecular weight (at infinite dilution) of about 23,000 to 25,000 is indicated. Magnesium ions cause an increase in the molecular weight of the apparent molecular weight. In the presence of Mg++, it exists largely in associated form in 0.02 M Mg++ at concentrations greater than 2 mg/ml. and at 25°C.

Sarfare et al. (e) at Clark University, Worcester, Mass., investigated the polymerization of α-chymotrypsin using a technique that is active sites of the enzyme monomer units. To this effect, the dependence of the weight-average molecular weight was studied as a function of enzyme concentration in the presence of various amounts of is-phenylpropionate, a competitive inhibitor. The results have been compared with the predicted molecular weights computed for several models involving the existence of various distinct polymeric species. It was confirmed that the active sites were accessible regardless of the polymerization of the enzyme.

Finally, the interaction between two biopolymers were studied in paper (f) at the University of Rome. Since lysozyme carries a net positive charge at neutral pH and dextran is negatively charged, a strong interaction between the two was expected on electrostatic grounds. Depending on the conditions, both soluble and insoluble (precipitated) macromolecular complexes were formed. The tendency to precipitate increases at low ionic strength, pH and temperature. A quantitative evaluation of the results obtained for soluble complexes has been attempted on the basis of models involving a reversible association-dissociation equilibrium and different stoichiometric ratios.

If you would like reprints of the previous articles in this series as well as complete information on the instrumentation described in the above study, write Phoenix Precision Instrument Co., 3803 N. 5th Street, Philadelphia, Penna. 19140.
the ear combined with dermis from the sole) were transplanted to an appropriate host. Histologic examination of these combined grafts strongly suggested that epidermal specificity was determined by the underlying dermis. On the other hand, epithelia from mucosae (tongue or esophagus) retained its original characteristics when recombined with ear or sole dermis. However, when mucosal epithelium was recombined with trunk dermis, it acquired the characteristics of trunk epidermis. In order to study cytodifferentiation and morphogenetic potentials of epidermal cells in a nondermal mesenchymal environment, suspensions of epidermal cells were inoculated in muscle, spleen, and beneath the renal capsule. Histologic examination of these cellular implants revealed not only formation of epidermal cysts, but more complex structures. Sebaceous glands and hair follicles with papillae, surrounded by a connective tissue with a structure resembling that seen in the dermis, were noted.

The behavior of adult epidermal cells in vitro and in vivo, as it relates to organization, differentiation, and mitotic activity was reported by Eugene J. Van Scott (National Institutes of Health). Adult epidermal cells cultured in a suitable medium and placed in contact with a glass or plastic surface develop, after 2 to 3 weeks, an outgrowth of several layers with a distinct gradient of cell maturation. Mitotic activity was seen only in the first two lower layers of basal cells. The next three to four layers consisted of basal cells, whereas the uppermost layers, in contact with the nutrient medium, consisted of mature epidermal cells undergoing keratinization. Thus, adult epidermal cells in vitro can organize and differentiate (tonofibrils present) in the absence of connective tissue. However, in these experiments, keratohyaline granules and a stratum corneum did not develop. This study suggests that the connective tissue may play a role in promoting the full manifestation of epidermal cell behavior. The control of mitotic activity of the germinative cells in the hair follicles is determined by the surface area of the dermal papilla, since only those cells in contact with it divide. Keratinization or cell death takes place when a follicular cell is separated from the stroma by a distance of 100 microns. Further studies on the interdependency of the follicular epidermis and its corresponding papilla were re-
ported by Roy F. Oliver (University of Birmingham, England). He showed that implants of follicular epidermis from vibrissae, where the tubular arrangement was preserved, would regenerate a papilla and whisker while similar implants of flat follicular epidermis failed to do so. Thus, the spatial arrangement of follicular epidermal cells seemed to be a prerequisite for morphogenesis to take place. Transplantation of vibrissa dermal papillae to the upper half of vibrissae follicles induced whisker growth. However, induction of follicle or hair formation did not take place when epidermis from the ear (which contains hair follicles) or from a follicular scrotal sac epidermis were implanted into ear skin in proximity with vibrissa dermal papillae. Both types of epidermis did, however, become organized locally into "matrices" around the papillae. This lack of inductive effect may be due to several factors. The stimulating effect of the papillae was not intense enough; some epithelia are more refractory to dermal influences than others; and the effect of local dermal influence(s) on the site of implantation overrides the inductive properties of the vibrissa dermal papillae.

Clyde J. Dawe (National Institutes of Health) reported that the induction, in vitro, of tumors in salivary gland rudiments by polyoma virus, requires the presence of both epithelium and mesenchyma. If trypsin-isolated epithelial and mesenchymal components are exposed separately to the polyoma virus, neither component causes the development of tumors. The appearance of tumors in the salivary gland rudiments was accompanied by some morphogenetic changes of the epithelium. These experiments also revealed that tissue from polyoma-virus induced tumors is capable of supporting growth and normal adenomere formation of isolated salivary gland epithelium. It is not known whether this morphogenetic effect is due to the neoplastic or to the stromal components of the tumor.

Johannes Holtfreter (University of Rochester) and C. B. McLoughlyn (University College, London) were unable to attend the meeting but their contributions will be included in the publication of the full-length papers. The Williams and Wilkins Company will publish the proceedings.

RAUL FLEISCHMAIER

Section of Dermatology,
Department of Medicine,
Hahnemann Medical College and
Hospital, Philadelphia, Pennsylvania
Four new top-loading balances described in Mettler bulletin

P160, P2000, P5, and P6 are Mettler's new top-loading balances. All provide improved precision/capacity relationships, and all feature analog or digital reading.

The P160 features a reversible scale which eliminates computations in weight-loss studies and permits easy gravimetric titrations.

Levelmatic, a Mettler feature which automatically compensates for slight shifts in balance level, is supplied in the P5 and is an option in the P160 and P2000.

The P5 and P6 offer special advantages for weighings in the range of 5 to 6 kilograms; the P2000 is unusually compact.

Obtain Well Defined Spectra from Highly Turbid Media

Shimadzu MPS-50L

Multipurpose Recording Spectrophotometer

Provides distinct absorption bands of highly turbid, translucent, and opaque, as well as transparent, materials, over a range of 190 to 2500nm.

A double detection system utilizes two large end-on photomultiplier tubes located in close proximity to the sample and reference cells. This configuration increases greatly the fraction of light incident upon the photomultiplier, permitting the analysis of highly turbid media.

FEATURES:
- Baseline compensation over the entire range (190nm to 2500nm) by easily adjustable potentiometers
- Makes possible the measurement of high absorbance values \((A = 0 \sim 5.0)\)
- Records difference spectra on an expanded absorbance scale \((A = 0 \sim 0.2)\)
- Microspectrophotometric attachment that utilizes reflecting optics, and has its own separate detector and baseline adjusting system. This accessory provides unique capabilities; e.g., it permits scanning a single red blood cell as it is moved across a light beam of fixed wavelength, or recording the absorption of a portion of a cell as the wavelength is varied. Other accessories available for derivative spectrophotometry, chromatogram scanning, double-beam fluorometry, absolute turbidimetry, photometric titration, etc.

The Shimadzu Model MPS-50L Spectrophotometer is distributed exclusively in the U.S. and Canada by the American Instrument Co., Inc. To arrange for a demonstration and/or demonstration sample analysis, contact the Analytical Instruments Applications Laboratory at Aminco. Write Aminco to receive literature describing the MPS-50L in full detail.
Only an automatic polarimeter this sensitive could be this accurate.

Sensitive to 0.0001° and accurate to ±0.0002°, Bendix® Polarimeters are the world's most accurate—and often give more precise results than methods based on any other physical or chemical phenomena.

Bendix automatic polarimeters are all-electronic with no moving parts. They feature the most versatile readout in the business—dual-range meter, chart recorder (directly), digital display and a tape printer. And you can also use a scope for a readout.

The basic model features a four-inch, dual-range meter for reading optical rotation. A recording model incorporates a multi-range, strip-chart recorder. The digital model provides a direct, four-place readout and gives optimum advantage of system accuracy. A printer programmer can be added, to automatically scan a number of measurements, totalize, stop or repeat with readout on a digital tape printer.

Ability to use a very short sample cell extends the effective range to ±50° and adds to the versatility of Bendix automatic polarimeters for quality control, process control, reaction monitoring, column chromatography and optical and physical property studies.

Bendix scientific instruments—including mass spectrometers, atomic absorption and flame spectrophotometers, polarimeters, polarographic systems and electron multipliers—are used in over 100 areas of research and analysis. For more information, write: The Bendix Corporation, Scientific Instruments Division, 3625 Hauck Road, Cincinnati, Ohio 45241. Or phone (513) 772-1600.
Every Researcher's Dream

Lourdes Beta-Fuge™ A-2
4,000 ml to 12,500 x G. Automatic. Refrigerated. For batch or continuous flow. Takes 15 interchangeable heads. ... $2,570 with rotor.

Lourdes Clini-Fuge™ 30-R
Automatic. Refrigerated. For batch and continuous flow. Combines low speed, super speed and ultra speed capacities in one unit. ... Refrigerated (No. 30-R) $2,550 ... Non-refrigerated (No. 30) $995

Lourdes Versa-Fuge Bench Type
For batch and continuous flow. Super speed. Versatile. Speeds to 17,000 rpm. Forces to 34,800 x G. ... $420

Lourdes Model AX Bench Type
16,500 rpm with up to 400 ml. Forces to 34,800 x G. ... $265

Lourdes Continuous Flow System
Increased efficiency in separating solids from large volumes of liquids.

These Lourdes Centrifuges will do the work you want easier and faster because they are more versatile

Greater Capacity 4,000 ml to 12,500 x G. (Lourdes Beta-Fuge A-2)

Increased Versatility Wider speed ranges, combining low-speed, super and ultra-speed in one unit. (Lourdes Clini-Fuge 30-R)

Rotors are interchangeable without adaptors.

Detailed data sheets available on request. Write to Dept. S-922

HEAT SYSTEMS CO.
72 BROAD HOLLOW RD., MELVILLE, L.I., NEW YORK 11749
Phone (516) 692-9590
Exclusive distributors for Branson Sonifier Cell Disruptors

LOURDES
148 SWEET HOLLOW ROAD,
OLD BETHPAGE, N.Y. 11804
(516) 694-8686

Breaks all cells, spores, tissues (at below 8° C)

New Models
W-140-C $820
W-185-C $920

Attachments
3 types of cooling cells; continuous flow; sealed chambers; micro tip; cup horn; flow thru horn

AUTOMATIC TUNING with variable power
WATTMETER OUTPUT for repeatability
EXTREME POWER for large volumes
BUILT-IN TIMER—Set it and go to lunch

Booth 630—Federation Show
TIME METRIC SCALE LABELS

Make size and identification of subject a permanent part of photograph with easy-to-use labels. Available in two sizes with imprinted numbers on calibrated scale of 3 cm or 6 cm and space for recording specimen and date. Permanent or removable, self-sticking adhesive allows placement on or next to subject. Write for free literature and samples.

Multifuge

Many heads are better than one. The UV offers over thirty. Plus hundreds of accessories for unlimited applications. Volume lab work? Precision research? The fast and versatile UV handles both. You get 5600 rpm and 18750 g with large capacity heads. With multi-speed attachment, you reach 23400 rpm and 37950 g. Your IEC dealer has the UV in stock. Get the one centrifuge that does the work of many. In the meantime, write us for Bulletin UV.

IEC INTERNATIONAL EQUIPMENT CO.
300 SECOND AVENUE • NELDINGHAM, MASS. 02194

16-20. Metallurgical Soc., fall mtg., Cleveland, Ohio. (J. V. Richard, 345 E. 47 St., New York 10017)
16-20. American Soc. for Metals, Cleveland, Ohio. (Meetings Manager, Metals Park, Ohio)
16-20. Society for Non-Destructive Testing, Cleveland, Ohio. (SN-DT, 914 Chicago Ave., Evanston, Ill. 60202)
18-22. American Soc. of Clinical Hypnosis, 10th annual scientiffic mtg., New York, N.Y. (F. D. Nowlin, 800 Washington Ave., SE, Minneapolis, Minn. 55414)
19-20. Severe Local Storms, conf., St. Louis, Mo. (K. C. Spengler, 45 Beacon St., Boston, Mass. 02108)
23-24. American College of Preventive Medicine, annual mtg., Miami, Fla. (J. J. Wright, Box 1263, Chapel Hill, N.C. 27514)
23-26. American Vacuum Soc., 14th natl. mtg., Kansas City, Mo. (P. J. Bryant, Midwest Research Inst., 425 Volker Bldg., Kansas City, Mo. 64110)
REQUEST.

M.P.
be
B.P.
tive,
8.To
follows:
RESEARCH
MANN
TETRANITROMETHANE

Recent
detectable
Arsenic
Sulfate(SO4)
RESEARCH
MANN
Pulmonary
For

For
Magnesium
Calcium
New
ANTI-CANCER

For

Iron
(Fl)
with

Iron
(Fe)

Check
detectable
Chloride(Cl)

<0.0005%
DENSITY
<0.00005%
Chloride(Cl)
<0.00005%
<0.0001%

INC.
LABORATORIES,
these

of
commercially
available.

MANN
PURIF.
Pure,

M.A.
Heavy Metals (as Pb)
<0.001%
Iron (Fe)
<0.00005%
Calcium (Ca)
<0.0004%
Magnesium (Mg)
<0.00005%
Arsenic (As) Not detectable

MANN
FURITE
Pure,
M.A.
Iron (Fe)
<0.00005%
Chloride (Cl)
<0.0005%
Sulfate (SO4)
<0.0005%
Arsenic (As) Not detectable

TRIS, Ultra Pure,
M.A.
(previously called
“Enzyme Grade”) Mn 0.01 PPM
Cu 0.02 PPM
Fe 0.2 PPM

UREA, Ultra
Pure, M.A.
Fe—Not
detectable

FREE WORKING SAMPLES OF THE ABOVE
ULTRA PURES ARE AVAILABLE UPON
REQUEST.

ANTI-CANCER AGENTS
For Studies into Mammary, Ovarian,
Pulmonary and Stomach Cancer as well
as Hodgkin’s Disease
N,N’—DIHYDROXYUREA
HYDROXYUREA

TETRATRITROMETHANE (TNTM)
Recent studies have indicated Tetratritro-
methane shows promise as a highly selec-
tive, specific and mild reagent for the
nitrination of tyrosyl residues of protein at
pH 6. To encourage further investigation
MANN RESEARCH can now offer TNTM as
follows:
TETRATRITROMETHANE (TNTM)
M.W. 196.04
B.P. 125.7°C
M.P. 13°C.

Caution: TNTM is relatively insensitive to
impact or adiabatic compression but mix-
tures with other organic materials must be
checked for ease of detonability and
handled with appropriate caution.

FREE CATALOG
lists over 4,000 research
biochemicals. A must for
your files. Call or write
for your copy today.

MANN RESEARCH
LABORATORIES, INC.
A B-D company
135 Liberty Street, New York, N.Y. 10006
(212)-233-5963

23-27. American Inst. of Aeronautics
and Astronautics, 4th annual mtg., Amas-
heim, Calif. (Meetings Manager, AIAA,
1290 Sixth Ave., New York 10019)
23-27. American Public Health Assoc.,
95th annual mtg., Miami Beach, Fla. (B.
F. Mattison, 1790 Broadway, New York
10019)
25-27. Antimicrobial Agents and Chem-
otherapy, 7th interscience conf., Chicago,
Ill. (R. W. Serber, 115 Huron View Blvd.,
Ann Arbor, Mich.)
25-27. Graphics Arts. 4th conf., Roch-
ester, N.Y. (K. G. Chesley, TAPPI, 360
Lexington Ave., New York 10017)
25-27. Gulf Coast Assoc. of Geological
Socs. American Assoc. of Petroleum Geo-
logists. San Antonio, Tex. (A. M Borland,
Sun Oil Co., Box 3308, Lafayette, La.)
25-28. American Acad. of Periodontol-
ogy. 53rd annual mtg., Washington, D.C.
(R. G. Keeses, 211 E. Chicago Ave., Chi-
cago, Ill. 60611)
25-28. Congress of Neurological Sur-
egons, 17th annual mtg., San Francisco,
Calif. (J. M. Thompson, 1955 Blossom
Way S, St. Peters burg, Fla. 33712)
26-27. Planetology and Space Mission
Planning. New York, N.Y. (R. D. Enz-
mann, 29 Adams St., Lexington, Mass.)
26-28. Unconventional Photographic
Systems, symp., Washington, D.C. (H. J.
Hall, 10 Maguire Rd., Lexington, Mass.)
27-28. American Soc. of Ophthalmol-
ogy and Otorhinolaryngology Allergy,
annual mtg., Chicago, Ill. (I. El. Morris-
son, 603 Hume Mansur Bldg., Indianap-
olis, Ind.)
26-29. Photographic Interaction be-
tween Radiation and Matter, colloquium,
Washington, D.C. (Society of Photographic
Scientists and Engineers. 1330 Massa-
echusetts Ave., NW, Washington 20005)
28-2. American Fracture Assoc., annual
mtg., Chicago, Ill. (H. W. Wellmerling,
610 Griesheim Bldg., Bloomington, Ill.
61701)
29-1. Association for Research in Oph-
thalmology, annual mtg., Chicago. Ill.
(Secretary-Treasurer. Univ. of Florida,
College of Medicine, Gainesville 32603)
29-4. American College of Gastroenter-
ology, 32nd annual conv., Los Angeles,
Calif. (D. Weiss, 33 W. 60 St, New York
10023)
30-2. American Dental Assoc., 108th
annual mtg., Washington, D.C. (H. Hillen-
brand, 211 E. Chicago Ave., Chicago, Ill.
60611)
30-2. Nuclear Science. 14th symp., Los
Angeles, Calif. (R. E. Emberson. 345 E.
47 St., New York 10017)
31-2. Numerical Prediction. conf. Mon-
terey, Calif. (K. C. Spengler, 45 Beacon
St., Boston, Mass. 02108)
31-2. Society for Experimental Stress
Analysis, annual mtg., Chicago, Ill. (B. E.
Rossi, 21 Bridge Sq. Westport, Conn.
06880)

International and Foreign Meetings
1-4. Gondwana Stratigraphy and Pale-
ontology. 1st intern. symp., Mar del Plata,
Argentina. (Secretario. L. Simposium Inter-
nacional Sobre Estratigrafia y Paleontol-
ologia del Gondwana. Casilla de Correo
5483. Buenos Aires, Argentina)
1-6. World Federation for Mental
Fisher has a $325 vacuum oven with more usable sample space and a stainless-steel chamber. (It's worth looking into.)

If this isn't enough, the new Model 48 can be operated under vacuums down to 30° Hg, will respond to temperature changes of ±1.0° over a range of 40°C to 200°C. You can use this compact unit efficiently as a vacuum-drying oven; as a controlled-atmosphere or ordinary air-filled chamber for static drying; and as a purged-atmosphere chamber. The 9/32"-thick, stainless-steel interior and removable stainless-steel shelves guard against corrosion. Usable sample space is 313 sq. in.

FISHER SCIENTIFIC CO.

Instruments, apparatus, furniture and chemicals for laboratories • ATLANTA BOSTON CHICAGO CINCINNATI CLEVELAND HOUSTON PHILADELPHIA PITTSBURGH ST.LOUIS NEW YORK WASHINGTON EDMONTON MONTREAL TORONTO VANCOUVER

Health, 20th annual mtg., Los Angeles, Calif. (Administrative Headquarters, 1, rue Gevrey, Geneva, Switzerland)
1-14. Field Symp. on the Granites of Northeastern Brazil and Their Comparison with Those of West Africa, Recife, Brazil. (J. Lombard, 12, rue de Bourgogne, Paris 7, France)
2-5. Standardization of Pharmaceutical Preparations, 3rd intern. con. Halle an der Saale, Germany. (Sekretariat, Pharmazeutische Gesellschaft in der D.D.R., Weinbergweg., X-402 Halle an der Saale)
2-6. Disease Epidemiology, Forecasting and Losses, conf., Rome, Italy. (International Agency Liaison Branch, Office of the Director General, Food and Agricultural Organization, Via Delle Terme di Caracalla, Rome)
2-6. Scientific Society for Air and Space Travel/German Soc. for Rocket Technology and Space Travel, annual mtg., Karlsruhe, Germany. (Wissenschaftliche Gesellschaft für Luft- und Raumfahrt, Martinstr. 40-42, 5 Cologne, Germany)
3-5. International Conf. on Hydraulic Research, Brno, Czechoslovakia. (Vysoke Uceni Technicke, Fakulta Stavebni Vedeco Vyzkumny Ustav, Vodnho Stavitelestvi A Hospodarstvi, Rektreani 1, Brno 35)
3-7. Tuberculosis, 19th intern. conf., Amsterdam, Netherlands. (J. Meijer, Postbaan 146, The Hague, Netherlands)
4-6. Ultrasound Symp., Vancouver, B.C., Canada. (B. A. Auld, W. W. Hansen, Labs. of Physics, Stanford Univ., Stanford, Calif. 94305)
4-9. International Academy of Legal Medicine and of Social Medicine, 7th congr., Budapest, Hungary. (M. Helpern, 520 First Ave., New York 10016)
5-7. Protection of Seacoasts against Pollution, symp., Hamburg, Germany. (L. R. Alldredge, ESSA/JER, Inst. for Earth Sciences, Boulder, Colo. 80302)
8-13. International Congr. of Plastic Surgery, Rome, Italy. (G. Francesconi, Via Lamaramora 10, Milan, Italy)
9-11. Industrial Research Inst., fall mtg., Quebec, Canada. (G. W. McBride, 100 Park Ave., New York 10017)
11-13. Hot Atom Chemistry, intern. mtg., Kyoto, Japan. (N. Saito, Dept. of Chemistry, Univ. of Tokyo, Bunkyo-Ku, Tokyo, Japan)
12-15. Communications, 15th intern. congr., Genoa, Italy. (Secretary, Instituto Internazionale Delle Comunicazioni, Viale Brigate Partigiane, 18, Genoa)
16-18. Canadian Chemical Engineering,