Then. Old water wagon used in the early 1900's by the citizens of Coalinga, California, to transport drinking water from the nearby San Joaquin Valley. Now. San Luis Unit, Bureau of Reclamation's Central Valley Project, California. This 103-mile long canal is one of the major waterways in the West; it is a link in the chain to transport water from northern to southern California. [J. C. Dahilig, Bureau of Reclamation]

Speakers and Topics

30 December (morning)
Chairman: Jay M. Bagley
(Utah State University)

Historical Background and Philosophic Basis of Regional Water Transfer, Calvin Warnick (University of Idaho).

Intrastate, Interstate, and International Legal and Administrative Problems of Large-Scale Water Transfer, Edward Weinburg (U.S. Department of the Interior).

Physical Implications (Equilibrium Changes in Hydrologic, Climatologic, Water Quality, and Other Factors), P. H. McGauhey (Sanitary Engineering Research Laboratory, Richmond, California).

Social and Ecological Implications, Thadis W. Box and Gerald W. Thomas (Texas Technological College).

30 December (afternoon)
Chairman: Terah L. Smiley
(University of Arizona)

Institutional and Political Factors, Irving K. Fox (University of Wisconsin).

Economics of Large-Scale Transfers, Charles W. Howe (Resources for the Future, Washington, D.C.).

Import Alternatives, Gale Young (Oak Ridge National Laboratory).

Water Importation in Water Resources Development Philosophy, Dean F. Peterson (U.S. State Dept.).

31 December (morning)
Moderator: Henry P. Caulfield, Jr.
(Water Resources Council)

Panel Discussion: E. Roy Tinney (Department of Energy, Mines, and Resources, Ottawa, Canada); Emery N. Castle (Oregon State University); Sol Resnick (University of Arizona); Earnest F. Gloyna (University of Texas); and Harvey O. Banks (Leeds, Hill, & Jewett, San Francisco).

New Matheson

Dyna-Blender

New dynamic-dilution system produces highly accurate gas mixtures in p.p.m. or percentage ranges.

Dyna-Blender was developed by Matheson to create calibration standards for very critical and difficult mixtures. It is especially useful in the fields of semiconductor manufacture, air pollution control, instrument calibration, and other areas requiring p.p.m. gas mixtures.

Advantages

1. Easily produces precisely known mixtures which would tend to be unstable if prepared in advance.
2. Mixtures accurate to 5%; repeatable to 2%.
3. Concentrations can be varied in minutes. Eliminates need for storing many different concentrations.
4. Permits substantial savings.

Write for Bulletin

The Matheson Dyna-Blender is engineered to your specific requirements with broader ranges than are required for normal applications. It is supplied completely calibrated for use and can be monitored by connecting to any standard recorder. The Dyna-Blender is another custom made system developed by Matheson for improved gas handling. See Matheson Catalog for information on other Matheson gas handling equipment.

MEETINGS

Glaciers

A conference on surging glaciers was held at the Center for Continuing Education of the Banff School of Fine Arts, Banff, Alberta, Canada, 6-8 June 1968. Particular emphasis was placed on the possible geologic effects of surging glaciers, both now and in the past. Some attention was also given to the hydrology of such glaciers. Because the Steele Glacier, in the southwest Yukon, is one of the better known surging glaciers, it was the topic of several papers.

It was apparent from the beginning of the conference that the term “surging glacier” was used by the participants in different ways. At least three field criteria were suggested as indicative of a surge: (i) an unusually high velocity of the glacier; (ii) a depression or collapse of the ice surface in the accumulation zone of the glacier; and (iii) the presence of intensely crevassed or fractured surface of the glacier. A surprisingly large number of glaciers seem to have surged, but the distribution of this type of glacier is not well known, mainly because of the difficulties of access to the areas of their occurrence. Almost all information on surging glaciers is from areas of mountain glaciers. One paper and some informal discussion brought out the fact that there is no synchronicity of surges of mountain glaciers.

The possibility of glacial surges at the margins of continental glaciers is of great importance to Pleistocene geologists, because the interpretations of glacial history are now based on the assumption that ice fronts were stable for relatively long time spans in areas of prominent recessional moraines, and that synchronicity existed in advances along the margins of different ice lobes. The means of recognition in the geologic column of the deposits from a surging glacier are little known. N. W. Rutter (Geological Survey of Canada) presented the results of a comparative study of the deposits of mountain glaciers. One glacier had surged in the past, and the other lacked any evidence for a surge. There was no clear-cut orientation in the till fabric of the moraine of the surged glacier.

The conference concluded with a panel discussion on the needs for future study of surging glaciers. The panel consisted of Walter A. Wood, Aleksis Dreimanis, A. E. Harrison, and L. A. Bayrock. From the discussion, a number
of conclusions could be drawn: (i) a need for standardization of the terminology of surging glaciers; (ii) a need for further study of the physics of the ice in such glaciers, preferably starting on glaciers on which a surge is anticipated; (iii) a need for more data on the weather in the area of such glaciers; and (iv) a need for a careful examination of the stratigraphic record, with the purpose of recognizing possible large-scale glacier surges during the Pleistocene.

The conference was sponsored jointly by the National Research Council of Canada and the University of Alberta.

A. J. BROSCOE
Department of Geology, University of Alberta, Edmonton, Canada

Calendar of Events

National Meetings

November

10-15. American Assoc. for Inhalation Therapy, Houston, Tex. (M. T. Bowers, 4075 Main St., Riverside, Calif. 92501)
11-14. American Nuclear Soc., Washington, D.C. (Executive Secretary, 244 E. Ogden Ave., Hinsdale, Ill. 60521)
14-16. Southern Thoracic Surgical Assoc., San Juan, Puerto Rico. (H. H. Seiler, 517 Bayshore Blvd., Tampa, Fla. 33606)

This Fisher ISOTEMP® Oven does a lot more than dry your samples. It saves space. How much space? About 71/2 square feet. That's the working area you gain when you put the new Fisher Isotemp Wall Oven on your lab wall instead of on the bench. Of course, you wouldn't want the Wall Oven if all it did was save space. But that's just for openers. It is a gravity-convexion oven with a roomy double-door chamber that has a capacity of more than 3 cubic feet. It maintains temperature from 50°C to 200°C within ±2°C.

The Wall Oven is just one in the Fisher family of Isotemp Ovens. There are also conventional gravity-convexion and forced-draft ovens with 1-cubic-foot and 3-cubic-foot capacities. Some of the outstanding family features include the "Safety Sentinel" thermostat that protects against overheating, simple controls, magnetic latches on full-width doors, durable construction, constancy and uniformity of temperature. There's also an Isotemp incubator. Write for more product information about the Fisher Isotemp Ovens, and join the space savers. Fisher Scientific Company, 1397 Fisher Building, Pittsburgh, Pennsylvania 15219.
New toploading balance is fast, accurate...yet RUGGED!

New Torbal ET-1 top loader (160g capacity, 1 mg accuracy) makes accurate weighing easier and more foolproof than ever before.

NEW EASE thanks to complete digital display without the use of optical projections or verniers to read, no estimating.

NEW EASE because the one piece construction of the exclusive Torsion weighing mechanism has no knife edges to chip, wear or collect dust—hence there’s no loss in accuracy.

NEW EASE thanks to the electronic null readout feature, the ET-1 is not affected by sensitivity changes—from temperature or humidity variations or effects of foreign matter or wear. As long as you can see the null needle move for a 1.0 mg weight change, then a difference of 1.0 mg in weight-reading means 1.0 mg—today, tomorrow, next month, next year.

NEW EASE because the ET-1’s Torsion mechanism is far less affected by vibration than optical balances. You can use an ET-1 in conditions other balances can’t take.

NEW EASE thanks to out-of-level accuracy. For minor changes in level of the ET-1, zero point does not change.

THE TORSION BALANCE COMPANY

Clifton, N. J. : Sales Offices: Birmingham, Ala., Chicago, III.; Richardson, Tex.; San Mateo, Cal.;
Pittsburgh, Pa.; Plants and Offices in Montreal, Quebec, London, England and Waterford, Ireland.

WRITE FOR FREE BROCHURE.

“Quick, Henry, the screwdriver!”

All you need is a screwdriver to adapt Conflex lab furniture to changing R & D requirements.

S. Blickman Inc.
6910 Gregory Ave.
Weehawken, N. J.

Send free CONFLEX LAB FURNITURE catalog

Name/Title ____________________________

Institution ____________________________

Address ______________________________

City/State/Zip __________________________

Whenever a new project comes along—or there’s a new wrinkle in an old project—you can set up quickly. Over 800 possible arrangements. Change doors to drawers... Turn 3½" depth drawers into 7½" depth drawers... Adjust full depth shelves to 1" increments... Mix and match door and drawer sizes to your needs!

Just a twist of the wrist and everything fits.

Write for your free catalog today.

Inst., 1601 W. Taylor St., Chicago 60612)
18-20. Institute of Electrical and Electronics Engineers, 7th, Cocoa Beach, Fla. (I. E. Williams Aerospace Corp., P.O. Box 4007, Patrick Air Force Base, Fla. 32925)
18-20. American Petroleum Inst., Chicago, III. (Secretary, Program Commission, 1271 Avenue of the Americas, New York 10020)
18-21. Symposium on Basic Mechanisms of the Epilepsies, Colorado Springs, Colo. (J. K. Penry, Section on Epilepsy, Room 8A-03, Bldg. 31, National Inst. of Neurological Diseases and Blindness, National Institutes of Health, Bethesda, Md. 20014)
19. Air Pollution Control, Columbia, Mo. (Extension Div., Whitten Hall, Univ. of Missouri, Columbia.)
19-20. Systems Symp., 4th, Cleveland, Ohio. (P. Schneider, Systems Research Center, Case Western Reserve Univ., Cleveland)
19-22. Acoustical Soc. of America, Cleveland, Ohio. (The Society, 133 E. 45 St., New York 10017)
21-22. Chemical Kinetics Symp., Chapel Hill, N.C. (L. Pedersen, Dept. of Chemistry, Univ. of North Carolina, Chapel Hill 27514)