Photoregulation of an Enzymic Process by Means of a Light-Sensitive Ligand:
H. Kaufman, S. M. Vratsanos, B. F. Erlanger ... 1487

Reactions of Aromatic and Sulfur Amino Acids in Ribonuclease with Hydrogen
Atoms in Water Solution: R. Shapira and G. Stein .. 1489

Staphylococcal Nuclease: Size and Specificity of the Active Site:
P. Cuatrecasas, M. Wilchek, C. B. Anfinsen ... 1491

Warfarin Treatment of Mice Bearing Autochthonous Tumors: Effect on
Spontaneous Metastases: J. J. Ryan, A. S. Ketcham, H. Wexler 1493

Immunologic Enhancement of Tumor Xenografts by Pepsin-Degraded
Immunoglobulin: S. Broder and F. Whitehouse, Jr .. 1494

Sterol Precursors of Cholesterol in Adult Human Brain: G. Galli,
E. G. Paolletti, J. F. Weiss .. 1495

Biologic Precipitation of Fluorite: H. A. Lowenstam and D. McConnell 1496

Amino Acid Composition of Organic Matrix in Calcareous Oolites: R. M. Mitterer .. 1498

Receptors Sensitive to Carbon Dioxide in Lungs of Chicken:
D. F. Peterson and M. R. Fedde .. 1499

Separation of Cellular from Extracellular Controls of Drinking in Rats by
Frontal Brain Damage: E. M. Blass ... 1501

Sleep after Exercise: J. A. Hobson .. 1503

Is Orientation-Specific Color Adaptation in Human Vision Due to Edge Detectors,
Afterimages, or “Dipoles”?: C. S. Harris and A. R. Gibson 1506

Technical Comments: Potassium Feldspar in Weekeroo Station, Kodaikanal, and
Colomera Iron Meteorites: T. E. Bunch and E. Olsen; Chromosomal Effect
and LSD: Samples of Four: W. H. Kruskal and S. Haberman; F. W. Whitmore;
R. S. Sparkes et al.; Factors Determining Spatial and Size-Frequency Distributions
of Gemma gemma: R. H. Green and K. D. Hobson; J. B. C. Jackson 1507

MEETINGS Peptides: B. Weinstein and S. Lande; Calendar of Events 1511

Cover

“Square of Three,” by Reginald Neal, Rutgers—The State University, New
Brunswick, New Jersey. A simplified version of this painting served as the
test stimulus in research on a new color illusion. See page 1506.
Lee DuBridge

The choice of DuBridge as Science Adviser to the President has been widely acclaimed, and rightly so. To the office he will bring a combination of distinction, excellent judgment, poise, and ability to communicate. These qualities will gain for him the ear of the President, the respect of Congress, and strong support from scientists and engineers.

DuBridge began his professional career as a highly regarded physicist. Next came his wartime leadership of the great Radiation Laboratory in Cambridge. Since 1946 he has served as president of the California Institute of Technology.

These are tense days on campus, but soundings at Pasadena indicate warm admiration for the way in which DuBridge has conducted affairs there. He has been flexible and therefore responsive to the changing times. He has handled touchy situations well. For example, the intense concern that Linus Pauling's views must have aroused in a conservative board of trustees did not lead to an explosion.

Good judgment is an essential ingredient of poise. The interplay of those two characteristics can be seen repeatedly in the record of DuBridge's public appearances. A recent example was the press conference, held in New York, at which his appointment was announced. The press gave DuBridge a number of opportunities to stumble, but he was surefooted.

An important asset is DuBridge's ability to communicate effectively. His lectures, though related by common threads, have been remarkably free from platitudes and worn-out ideas; they contain fresh concepts and arguments. A guest editorial in Science (13 December) is a fair example of his style and creativity.

The post of Science Adviser does not automatically carry with it much authority or influence. During the Eisenhower administration the science advisers, Killian and Kistiakowsky, were able to be quite effective. They enjoyed the confidence of the President, and they dealt with problems on which their advice was needed and followed. Jerome Wiesner was very close to President Kennedy, and he wielded much power. DuBridge inherits an office whose stature inevitably diminished under Donald Hornig. Despite his many good qualities, Hornig could not overcome Johnson's distaste for the intellectual.

It seems likely that DuBridge will enjoy the confidence of his President. They have had friendly contacts over two decades. Establishing a good working relationship with Congress will require flexibility and skill. During the last 5 years Congress has assumed leadership in matters of science policy and has established its own sources of scientific advice. Many of its members have become versed in pressing problems, such as pollution. In these matters, various congressmen may well feel that they have as good a basis for judgment as DuBridge has.

In the area of federal support of academic science, DuBridge must be flexible. As president of one of the top institutions of learning, he has urged emphasis on the support of excellence. The mood of Congress is clearly with those who urge more attention to geographical distribution of funds.

DuBridge faces a most interesting challenge. The good wishes of the scientific community go with him as he prepares to take on his new responsibilities.—PHILIP H. ABelson