meet all or most of the cost by raising subscription rates. Some are organs of societies that have comfortable publication reserves. Perhaps an effort to obtain direct subsidies may be the most feasible and equitable solution. These might be administered by a special committee of the National Academy of Sciences. Subsidies on a continuing basis will have to come from the government, but as an emergency measure some of the foundations might be willing to contribute to maintain the quality and quantity of American scientific publications.

Harry Grundfest
Department of Neurology,
Columbia University, New York 10032

The University in Many Mirrors

C. West Churchman has taken the opportunity in his review of *The Closed Corporation: American Universities in Crisis* (14 Feb., p. 664) to drag his own soapbox to Sather Gate. Despite his oversimplified references to public figures, I applaud most of his pronouncements. His final question “What is a university?” is certainly the most important question to ask. Individual answers will range from a laboratory-library concept of detached experimentation and ascetic activity to describing an orgy of collective involvement in controversial issues of the moment. Also, the pictures of the ideal student-teacher relationship will vary from one showing a harsh master-apprentice arrangement to one in which teacher and student are depicted as soul brothers engaged in an intense inquiry into the ultimate meaning of everything.

Whatever visions develop for the ideal university, however, vast amounts of support in money and goodwill are needed. Concerning this point, Churchman appears to be unrealistic. We simply cannot ignore the feelings of the “majority of the electorate.” The electorate has yet to be convinced that universities possess divine insight into their own worthiness. Until such a day arrives, both public and private universities must temper idealism with more than just a grudging awareness of public opinion. Hypocrisy need not result. The electorate has long ago adjusted to the general fact that students and professors do not agree with many or, in the electorate’s mind, most of the current political, moral, and religious convictions. The electorate will never adjust,
however, to having these cherished beliefs treated with insolence. Nihilists are making the most of this fact. In addition, well-meaning students and faculty have too often confused the lofty concept of freedom of expression with freedom to give pointless, or even pernicious, insult and offense. To me, "performing in a manner which pleases the majority of the electorate" does not mean conforming to popular whims or beliefs, but it does mean approaching our task with dignity and understanding.

Stanley N. Davis
Department of Geology,
University of Missouri,
Columbia 65201

PULSE in the City of the Future

In his article "Science and the city: The question of authority" (28 Feb., p. 902), Carroll has presented a comprehensive picture of the Department of Housing and Urban Development research activities. Also his reference 67 alluded to "HUD's most substantial technological study to date," the New Systems Study of Urban Transportation which is summarized in a HUD publication "Tomorrow's Transportation" (May 1968). Among the new technological developments suggested in the study is the Public Urban Locator Service (PULSE), a system which can automatically and rapidly report the location of many moving objects (people, vehicles, or goods), wherever they might be, to a central point where they can be rerouted if necessary to meet an emergency or changed requirements. This system could improve the functions of police operations, public transit, ambulance service, fire control, and movements of goods, to name a few.

PULSE is being developed under HUD leadership, assisted by the departments of Justice, Post Office, Health, Education, and Welfare, and Transportation, the Federal Communications Commission, and private industry; and it is hoped that it can be tested in the near future. This is an example of an urban utility which can jointly serve the needs of municipal agencies, commercial interests, and private individuals and illustrates the value of HUD research in nonhousing areas.

Stephen J. Kahne
Department of Electrical Engineering,
University of Minnesota,
Minneapolis 55455

Even a minor molecular rearrangement can have a dramatic effect on chemical activity. These profiles recorded by a Durrum-Gibson Stopped-Flow Spectrophotometer reveal a 40-fold difference in azide-hemoglobin reaction rates. One reaction is with normal hemoglobin, the other with a mutant containing alpha-chain tyrosine residues in place of the usual proximal histidines. Equilibrium constants would not have hinted at this difference; only kinetic tests with the Durrum-Gibson instrument permit the use of this new technique for classifying mutant types.

The Stopped-Flow Spectrophotometer is a versatile, general-purpose system that is widely used to determine the kinetic characteristics of reactions with half-times in the 5-millisecond to 50-second range. A temperature-jump accessory is available for studies involving even faster reactions, down to 10 microseconds or less. The accessory is uniquely designed to allow combination T-Jump/stopped-flow studies of pseudo-equilibrium reactions.

For complete information on the D-100 Series Stopped-Flow Spectrophotometer and its applications, contact... Durrum Instrument Corporation, 3950 Fabian Way, Palo Alto, California 94303, Phone (415) 321-6302.
New Clark-type electrode assembly can be used with Gilson Model KM or Model K Oxygraphs without modification. The Clark-type electrode eliminates the problems which occur when using a bare platinum electrode with high protein concentrations and particle suspensions such as whole blood and bacteria, and permits the use of the polarographic method in nonconductive solutions. The response time is only slightly greater than that of the bare platinum electrode.

- SENSITIVITY
- RESPONSIVENESS
- STABILITY

A recording oscillating oxygen cathode, the OXYGRAPH is a specific application of polarographic analysis. A single polarizable micro platinum cathode is coupled by a saturated KCl salt bridge to a nonpolarizable saturated calomel reference anode. Instead of recording a complete current-potential curve, only the limiting current (that current which is limited by the concentration of oxygen in solution) is recorded at an applied constant polarizing voltage, of about −0.6 volts with respect to the anode, across the indicator polarizable cathode.

- A micro platinum cathode for recording rapid changes of oxygen concentration in solution
- Large 20-cm span along the y-axis for a high degree of accuracy
- Sensitivity from ten- to a thousandfold greater than that of conventional gasometric methods for O₂ determinations
- Rapidity of measurements and ease of continuous recording permit accurate determinations of very rapid reactions involving molecular oxygen in solution

WRITE!
GILSON MEDICAL ELECTRONICS
Middleton, Wisconsin 53562
Telephone 608/836-1551
If you have to service time-sharers while running batch.

Get one Sigma.

Most machines can’t handle both. A few fake it by treating batch like a time-sharing terminal, so it gets worked on a few milliseconds at a time.

Sigma 5 and 7 handle both, concurrently. Our new BTM software allocates core memory and time for effective batch time-sharing. But if all your 38 time-sharers aren’t time-sharing, BTM automatically takes up the slack to speed batch processing.

As a result, batch runs smoothly at central site, or from remote batch terminals. BTM even lets time-sharers have access to the batch job stream for greater computing power and flexibility.

If batch isn’t running fast enough for you, terminal users can be gracefully dismissed from the system so all available time and memory can be given to batch. Without stopping the system or dumping files just to change modes.

But just because Sigma uses half its mind for batch and half for time-sharing, don’t expect half-witted programs. There’s a long list of conversational languages and services such as SDS Basic, Fortran IV H, and Symbol, which are compatible for batch operations. Plus powerful batch processors like SDS Fortran IV, SDS Cobol 65, FMPS, SL-1, Manage and others.

This sounds like a promise of things to come. It isn’t. We’ll come to your office and demonstrate it. Now.
We've taken the fuss out of Electrophoresis.

No more floppy strips. Mylar backed acetate makes strips firm, easy to handle.

No more pipetting. New striper® uses capillary action to make sample take-up automatic.

No more variable applications. Built-in guide provides in-chamber application. Sample position, quantity and alignment always the same.

No more jury-rigging—no magnets, clips, tails, sponges or outriggers. Simply mount strips in prepositioned slots and stripe.

No more fishing or finger dipping. Transfer rack permits hands-off batch processing through entire cycle.

No more chemical preparations. Just empty pre packaged containers into appropriate process chamber.

Our point of view is that we've taken the fuss out of the head-end of Electrophoresis. Try it and let us know your point of view.

This head-end combined with our Densicord is a complete system and assures reproducible results regardless of operator fatigue.

*Patent applied for*