3) The grade criterion in graduate should not be the object of our concern; rather we should be concerned with selecting those individuals who will make significant contributions to their field.

These points do indeed represent problems to consider in the prediction of graduate school performance, but clearly they are problems that exist whether we use the college GPA as a predictor, or standardized tests (which, it should be obvious from my affiliation, would earn my endorsement), or any other predictor. It does appear that Schagrin is aiming at the wrong target.

So much for misdirected criticism. But what distresses me most about Schagrin's letter is his willingness "to use the number of hairs on a student's head divided by his weight...if that were to be an effective predictor." The prediction of academic performance involves moral and ethical responsibilities as well as statistical precision, and to adopt a blindly empirical approach to prediction, as Schagrin suggests, without regard for its social consequences is to turn our backs on these responsibilities.

Let's come right down to it: If skin color is a good predictor of academic performance—and the purely empirical results observed by many investigators indicate that it is—should it therefore be used to select graduate school students?

WILLIAM H. ANGOFF
Educational Testing Service,
Princeton, New Jersey 08540

Gaps in the Graduate Training of Students from Abroad

I should like to add to the sensible letter by R. R. Ronkin (3 Jan.) regarding the problems of foreign Ph.D. students in the United States and their subsequent work in their home countries. As an American teaching abroad, I have had some experience placing students from the University of Malaya in universities in the United States, Canada, Britain, and Australia. The three specific areas of supplementary training suggested by Ronkin are certainly well taken: identification of research problems, maintenance skills, and basic administrative techniques.

Also, I have found that a student is occasionally awarded a fellowship to work in an advanced country which stipulates study in an area different from that desired by the student and by his own institution and homeland. Recently two students in our school of biological sciences were awarded scholarships, one to a university in country A, and the other to a university in country B. The awards should have been reversed. Country A required study in a field in which the first student was unfamiliar, and country B made the award for study which was unsuited to its grantee but would have furthered the work of the first student. These awards were both generous and difficult to secure. For those reasons, each student reluctantly agreed to accept them, even though the studies were different from their original work, and different in fact from that desired by their home institution.

Such anomalies are probably accidental, but they reflect other oversights made by the awarding committees of universities in advanced countries. Why, for example, do they insist that these students pursue highly applied training programs, even including those superior students who show promise of becoming skilled and independent research scientists? Developing countries need technicians and technologists, but also they need a superstratum of scientists who can work in pure science.

To cite one example, it is virtually impossible to find broadly-trained ecologists who can cope with all the aspects of land-use, as well as agriculture, in developing countries. There are great gaps between our knowledge of forestry, forest ecology, and forest resource management in the North American or European regions and its application to tropical rain forests. A newly-trained forester cannot uncritically apply in his tropical homeland, for example, the "monoculture" system which may work well in temperate areas, but is not necessarily suitable for the tropics. We need here more broadly trained and creative scientists who will begin original research instead of assuming that his knowledge of the management of pure stands of conifers, for instance, is all that is needed in order to utilize and preserve the dipterocarp forest, which is rich in species, but with an ecology largely undetermined.

Money is not the only requirement of the smaller and poor countries; their students must be trained to fill these very special technical and scientific basic needs.

BENJAMIN C. STONE
School of Biological Sciences,
University of Malaya,
Pantai Valley, Kuala Lumpur, Malaysia
His Nikon microscope graduates with him

Through the years at medical school he benefits from its precision and optical quality. He quickly becomes aware that, unlike so-called student microscopes, this is a professional instrument whose capabilities he will only have begun to discover by the time he is graduated. And discover them he will in the years to follow, as the Nikon microscope proves its flexibility in coping with the most specialized applications. Complete interchangeability of eyepieces, stages and other components makes it as versatile as his needs. Nikon flat-field objectives are available as original equipment or can be added at any time without modification of this instrument.

The Nikon SBR, featuring a binocular head and rectangular, coaxial, graduated mechanical stage, is the model most frequently chosen by medical students. It is also widely used in schools, hospitals and research laboratories. For medical student microscope catalog, write:

Nikon Inc., Instrument Div.
Garden City, N.Y. 11530
Subsidiary of Ehrenreich Photo
Optical Industries, Inc.
GILFORD UV & VIS SPECTROPHOTOMETERS

OVER 300 READINGS PER HOUR . . .
with the model 2443 RAPID SAMPLER

The Gilford vacuum operated rapid sampling system requires samples of only 0.5 ml and can process over 300 per hour. The cuvette remains in the measuring beam for both filling and cleaning, minimizing sample handling and cuvette breakage. Construction of chemically inert Kel-F permits the use of a wide variety of reagents.

With this increased productivity available, transcription time becomes a limiting factor. A permanent record of absorbance or concentration can be printed out automatically by adding the Gilford Model 410 Absorbance/Concentration Meter and Model 4006 Data Lister.

UV or VIS . . . STAINED OR UNSTAINED
with the model 2410 LINEAR TRANSPORT

Separation of ribosomal RNA by gel electrophoresis has made a powerful technique available. The development of the Gilford Model 2410 Linear Transport permits you to scan such gels in the ultraviolet directly. You get increased accuracy with high resolution. The time consuming staining process is eliminated.

Unstained and stained materials may now be analyzed, as both ultraviolet and visible energy can be used. With the Model 2410 Linear Transport you will be able to handle materials such as polyacrylamide gel cylinders and slabs, cellulose acetate membranes, and photographic emulsions.

RECORD 4 INDIVIDUAL REACTIONS WITH 12 POINTS PER REACTION EVERY 3 MINUTES . . .
with the model 2441 AUTOMATIC POSITIONER

Your spectrophotometer equipped with the Gilford automatic sample handling system will produce more data than before, while maintaining the precise alignment demanded when using micro cuvettes. In the automatic mode up to 16 plot points, four per individual cuvette, can be recorded in one minute. The exclusive offset feature permits individual baseline adjustment for each cuvette position.
BioQuest Biological Cabinet

A new degree of protection for both the worker and the work is now possible through the use of controlled air flow patterns in the cabinet. An air barrier is formed at the access to the work area. This air barrier separates and isolates the work area within the cabinet from the outside environment, protecting both the work area and the worker from airborne contamination. The unique feature of the BioQuest Cabinet air barrier is the use of HEPA filtered air channeled through the polycarbonate view screen. A vertical air pattern within the work area protects the work from cross-contamination.

The cabinet complies with Federal Standard No. 209a Class 100.

For further information contact these BioQuest distributors

- W. H. Curtin, Inc.
- Fisher Scientific Co.
- Matheson Scientific
- Scientific Products
- Van Waters & Rogers, Inc.

BioQuest, P.O. Box 243, Cockeysville, MD 21030

IN CANADA: Becton, Dickinson & Co. Canada Ltd, Clarkson, Ontario