If you think SDS just builds computers, write our last name a hundred times.
ences of nonclinic populations. Let me remind these readers (and Weissman as well) that I did not claim that all persons have optimum access to family planning. I simply questioned the need for and appropriateness of massive, class-oriented, government intervention at the clinical level—especially since there are still unexplored and unexploited resources in the private sector.

The possible "side effects" discussed in the article (such as charges of genocide and of encouraging sexual activity by teenage girls) are smoldering public issues (not personal objections, as suggested by Frank and Reynolds). When these are combined with the possibility of physiological side effects from birth control drugs, the potential explosiveness of the mixture cannot be entirely ignored. However, I do not argue that the government should hesitate to act because of a threat of this sort—if the issue is one clearly involving national welfare and requiring its resources and authority. I have argued, rather, that no one has demonstrated convincingly that family planning "deprivation" in the United States today is such an issue.

JUDITH BLAKE
Department of Demography,
University of California,
Berkeley 94720

Social Science in the Marketplace

Willeke's letter (16 May) discusses the problem of plans developed by technical experts and subsequently "rejected by the people." He urges a better understanding of such resistance to social changes and suggests that the services of social scientists be used to implement proposals that might otherwise be rejected.

Thompson's original article (14 Mar., p. 1180) reported the defeat of a conservation plan. Willeke refers to controversies surrounding the fluoridation of municipal water supplies and the planning of freeways in urban areas. Using social scientists to help secure the adoption of proposals of these types raises important ethical issues. Should the scientist (whether "social" or "political") make his services available to all who request it? Can social scientists adopt such a "morally neutral" position?

Ten years ago I was active in several campaigns involving fluoridation of municipal water supplies. Shortly thereafter I refused to participate in a social-M

Now you can digitize signals at high speed, with high accuracy and high temperature stability— but at low cost. The BIOMATION/DATALAB Series 700 Analog-to-Digital Converters use the successive approximation conversion method and are designed to interface easily with all computer systems.

The 710 is a 10 bit converter with a conversion rate, including sample and hold, of 200 kHz. The 712 is a 12 bit converter with a conversion rate of 125 kHz. Multiplex inputs of either 2, 4, 8 or additional increments of 8 up to a maximum of 64 inputs are available as an option.

The sample-and-hold circuit, with an aperture time of only 20 nsec, ensures that the units meet the accuracy requirement for high frequency input waveforms. During sampling, the circuit tracks the input continuously until the hold command is received. At this time the conversion process is initiated. This technique provides superior resolution for high frequency inputs.

Outstanding temperature stability of the converter is achieved by utilizing matched semiconductors and high stability passive components and power supplies. This method of temperature stabilization ends the need for control ovens and does not depend on a uniform temperature across the entire converter.

The Series 700 offers additional features, too, such as: 1 V input, input impedance, 10 Mo min.; common mode rejection, 60 db min.; and linearity, with low temperature coefficients over a 0–60°C operating temperature range. All models are completely self-contained, featuring precision stabilized power supplies, differential input stage, sample-and-hold circuit, digital logic control, and neon binary displays. Prices are low; only $1650.00 for Model 710, and $2250.00 for Model 712.

psychological study of the reasons why scientists refuse to participate in research on chemical and biological warfare. Ten years ago I might well have offered my services to groups seeking to overcome objections to major freeway proposals. Today I would not participate in such a project. How often are such questions discussed in graduate psychology or sociology training programs or at the annual meetings of the relevant professional associations?

College students are increasingly inquiring about our society's utilization of its highly sophisticated technical skills and knowledge. Protests against war-related research have occurred on numerous campuses. Is the scientist similar to the oft-described worker on the Detroit assembly line who is concerned only about the particular operation which is his responsibility? Should he not be concerned about the end-product which results from his efforts?

Social scientists often can contribute to the understanding of complex group and individual behavior. Clearly, however, the caveats that increasingly are being raised about the uses (and misuses) of science in general apply equally to the behavioral sciences.

THOMAS F. A. PLAUT
5502 Western Avenue,
Chevy Chase, Maryland 20015

Lysine Enrichment:
Do We Need It?

Paul B. Hamilton's letter (16 May) regarding the value of fortification of wheat with lysine was sharply critical of the Food and Drug Administration and other governmental agencies for failing to expedite a formal lysine fortification program. Hamilton failed to mention several key facets of the problem—facets which bear strongly on the wisdom of decisions on public policy in dealing with both domestic and international nutritional problems.

As a general principle, two broad types of data can justify serious consideration of enriching basic food commodities in attempting to control malnutrition. One of these consists of thorough and reliable survey data showing widespread deficiency of the nutrient in question among the population. With the B-vitamins, vitamins A and D, iron and iodine, such data were available for the United States prior to our enrichment and fortification programs for wheat, corn, and salt. Absolutely no such data indi-
Use the new Nalgene® Carboy to prepare, store, and autoclave 5-gallon batches of culture media, distilled water, and other solutions. This carboy (Cat. No. 2250) is precision molded of heavy-duty polypropylene to withstand repeated autoclaving. Only 2½ pounds light, has screw closure and two carrying handles for maximum safety and convenience.

Specify Nalgene Labware from your lab supply dealer. Ask for our Catalog or write Dept. 2107, Nalgene Labware Division, Rochester, N.Y. 14602.

dating widespread lysine deficiency have appeared, however.

The second type of data justifying fortification consists of field demonstrations that fortification of the type proposed yields a significant public health response among the population groups in question. The advocates of lysine fortification also have not produced data of this type. They do have voluminous data showing that lysine enrichment of wheat protein is beneficial to the rat under rigidly controlled dietary conditions and very limited data on infants, again under rigid metabolic ward conditions and restricted diets, showing a lysine response. There are, however, no field demonstrations of a significant lysine response on the part of either adults or children. The equivocal data resulting from such a study in which I participated [American Journal of Clinical Nutrition 12, 36 (1963)] are typical.

Those of us who hesitate to recommend lysine fortification of cereals do so because data indicating potentially significant public health benefits to be derived from such a program are lacking. Until positive results of this kind are available, it seems to us to be poor public policy to launch a program at home or abroad on the basis that lysine fortification might, rather than would, contribute to alleviation of the world food deficit.

Kendell W. King
Research Corporation,
405 Lexington Avenue
New York 10017

Reprint Clearinghouse

Potter's proposal (Letters, 7 Mar.) that "reprints should be paid for by the laboratory that requests them and not by the laboratory that generates them" indicates the widespread feeling of scientists that responsibility for dissemination of results does not extend beyond publication of an article. A practical solution would be for publishers to sell and distribute reprints through one central clearinghouse operated jointly on a prepaid basis by cooperating publishers of all scientific journals. If reprints cost less than making a copy (perhaps 3 cents per page with a 20-cent handling and mailing charge) and were mailed rapidly with a guarantee that all orders would be filled, the volume would be very high, yielding a substantial return even though per item profit would be low (the reverse of some existing and proposed systems).

Scientists would buy 10-cent coupons in advance and send them with a mark-sense form-card giving a single order number (taken from the published article) identifying the document and the number of coupons required. Order cards would be automatically processed with payments credited to cooperating publishers. The cards would then be sorted by order number to match the arrangement of articles on the shelves. Clerks could pull several thousand articles from shelves in one sequential pass, fold each article to reveal a preprinted postage-paid authorization on the blank back page, turn the request form over to show a return address, attach it to the reprint, and mail it at low bulk rates. Total clerical time should be less than one minute per reprint mailed.

This system has potential advantages to all. Authors would no longer need to process reprint requests or pay related postage costs, but instead would be required to pay the publisher a standard amount similar to current payments for reprints as a subsidy for printing and supplying reprints to the central office. The payment is a simple and inexpensive way to discharge an important, often overlooked, responsibility to society of dissemination of results.

Publishers, with a centralized mailing operation, use of standardized prepaid coupons, automated processing of fiscal information, and a small subsidy from authors, should realize about 1.5 cents profit per page distributed out of the 3 cents charged. For 250 orders of twenty 7-page articles in one issue of a monthly journal, 1.5 cents profit per page would be equivalent (assuming a 50 percent profit) to income from 420 subscriptions to a journal costing $30 per year.

Librarians and administrators could reduce the expense and staffing of sizable copying operations. These are widespread because there is no alternative cheap method of obtaining single copies of papers. (The average number of reprints obtained by each of 108 active research scientists at the M.D. or Ph.D. level in a recent survey I made was 17 per month or 204 per year.)

Serious users of reprints would benefit most from this proposed system, since they would be assured of receiving in a matter of days reprints at less than total copying cost. A more complete description is available on request.

John H. Schneider
3411 Fessenden Street, NW,
Washington, D.C. 20008
The only thing Lauda Circulators have in common with a water bath is the water they use. Beyond that, any resemblance ends. A Lauda not only heats, it can also cool, circulating water or other liquids at constant, electronically-controlled temperatures as high as 330°C or as low as -120°C. In addition, every Lauda Circulator features stainless steel construction of all components that come into contact with the bath liquid, solid-state electronic relays, automatic excess load protection for the pump, and manual drainage and flow control valves.

There are numerous Lauda Circulator models to choose from, depending on your specific temperature requirements. For example, the K-2 series heats to 150°C and can cool to -20°C, while the WB series is best for immersion heating up to 250°C. The N-HT has been engineered for superior high-temperature performance. It will heat from 50°C to 330°C and incorporates many unique features, including special high-temperature glass thermo-regulators, fully-sealed housing, water-cooled cover plate and special insulation.

If you do low-temperature work, you may be interested in the Lauda Ultra-Kryostat series that cools from ambient to -120°C. There is also a refrigerated version of the WB-20 that is specially recommended for controlled spectrophotometric temperature measurements.

Now that we've begun to convince you it's a mistake to call a Lauda Circulator a water bath, let our free catalog drive the point home. For your copy, just write:
Lauda Circulators, Division of Brinkmann Instruments, Cantiague Rd., Westbury, New York 11590.
Our microscope photometer doesn't keep you in the dark about what's going on outside the measuring diaphragm.

The Leitz MPV microscope photometer. With it, you can see the adjustable measuring diaphragm plus the entire field of view, which simplifies exact coordination of the measuring field with the object to be measured.

The MPV is an accessory for most Leitz research microscopes. Together with the appropriate transmitted or incident light systems, the MPV can be used in many areas of microbiology, histology and cytology. Microspectrophotometry, microfluorometry and silver grain count in autoradiography are just a few applications. And a variety of attachments make the MPV the most versatile microphotometer on the market. For example, many different photomultiplier tubes and stabilized light sources are available for use with it.

For more information about the MPV, including advice on which attachments and equipment are best suited for your particular research problems, write:

Leitz
E. Leitz, Inc.
468 Park Avenue South, N.Y., N.Y. 10016
Choosing a Signal Processor

by DR. E.U. COHLER, President
Computer Signal Processors, Inc.

Signal processing systems fall into three general categories. It is important to appreciate the differences in order to make a sensible selection.

Function-Specific

Function-specific processors are usually designed to perform a single version of a complete processing function. These systems, when developed and debugged, very often maximize performance per dollar. Unfortunately, they often result from the observation: "It's simple; we just throw together a few integrated circuits and" Sadly, the result is usually functionally rigid, obsolescent, and has cost a great deal to engineer.

Algorithm-Specific

Algorithm-specific processors are designed to perform individual algorithms of general usefulness, such as Fast Fourier Transforms. This category really consists of partial systems, since these processors must be combined with either a function-specific processor or a computer. Thus it is clear that the algorithm-specific processor, like the function-specific processor, is an inherently rigid approach.

General-Purpose

General-purpose processors are systems whose functions are programmed rather than wired. The most flexible of the three, they combine the advantage of standard hardware with a multiple function capability. Such a system may be used for any algorithm: Fourier transforms, digital filtering, correlations, convolutions, cepstra, amplitude histograms, signal averaging, spectral densities, or statistical analyses. It can also accomplish the many odd jobs peculiar to a non-specific environment: comparison, peripherals handling, display, threshold sets, adaptation, and decision-making.

Each category has its place and its most useful applications. Since you know your own requirements better than anyone else, it is practical to do your own evaluating. After each category has been considered against the application, selection will be nearly automatic.

Acuse in point:

CompuSignal System 3 (CSS-3)

A general purpose signal processing system capable of performing Fast Fourier Transforms (FFT's) in real time, and able to acquire samples at rates up to 50 KHz. Will perform 2048-point transforms, which can be extended by option. Also provides zoom FFT, auto-correlations, cross-correlations, convolutions, averaging, histograms, digital filtering, and special application-oriented signal processing routines. Complete system, including software, for less than $45,000. Sixty day delivery. Write for complete specifications: Computer Signal Processors, Inc., 209 Middlesex Turnpike, Burlington, Mass. 01803. Tel. (617) 272-6020.

See a demonstration at booth 41-A International Conference on Medical and Biological Engineering, Chicago, July 21-25