LETTERS

XYY Chromosome: Premature Conclusions: S. Kessler and R. H. Moos;
Defoliants: Orange, White, and Blue: G. H. Orians and E. W. Pfeiffer;
C. Leuba; Evolution or Not: J. E. Guilday and M. R. Dawson; J. L. King 442

EDITORIAL

The Control of Technology: O. M. Solandt .. 445

ARTICLES

Observed Diffraction Pattern and Proposed Models of Liquid Water:
A. H. Narten and H. A. Levy .. 447
Mechanism of Lysozyme Action: D. M. Chipman and N. Sharon 454
Some Ecological Benefits of Woody Plant Control with Herbicides: K. C. Barrons 465
Materials Science and Applied Science: W. A. Tiller 469

NEWS AND COMMENT

Hash in Holland: The Dutch Find It Easier To Let Traffic Flourish 476
Warm-Water Irrigation: An Answer to Thermal Pollution? 478
Harvard Graduate School: The Elite Response to Enrollment Pressures 480

BOOK REVIEWS

Technology, Engineering, and Economics and The Careless Atom, reviewed by
K. E. Boulding; other reviews by H. Lansdell, J. Rabinow, A. Klein,
M. E. Wrenn, E. Anders, W. W. Cleland .. 483

REPORTS

Crustal Plates in the Central Atlantic: Evidence for at Least Two Poles of
Rotation: P. J. Fox, W. C. Pitman III, F. Shephard 487
Clathrate Hydrates of Air in Antarctic Ice: S. L. Miller 489
Potentially Lethal Radiation Damage: Repair by Mammalian Cells in Culture:
J. A. Belli and M. Shelton ... 490
Indole(ethyl)amine N-Methyltransferase in the Brain: M. Morgan and A. J. Mandell 492
2-p-Toluidinyl-6-Naphthalene Sulfonate: Relation of Structure to Fluorescence Properties in Different Media: A. Camerman and L. H. Jensen 493
Induction in vitro of Microtubular Crystals by Vinca Alkaloids: K. G. Bensch et al. 495
Estradiol: Specific Binding by Pituitary Nuclear Fraction in vitro: W. W. Leavitt, J. P. Friend, J. A. Robinson 496
Vinblastine-Induced Precipitation of Microtubule Protein: R. Marantz, M. Ventilla, M. Shelanski 498
Circadian Rhythm of Cell Division in Euglena: Effects of a Random Illumination Regimen: L. N. Edmunds, Jr., and R. R. Funch 500
Toad Urinary Bladder: Intercellular Spaces: D. R. DiBona and M. M. Civin 503
Noncovalent Binding of a Spin-Labeled Inhibitor to Ribonuclease: G. C. K. Roberts, J. Hannah, O. Iardezky 504
Anaphylatoxin Release from the Third Component of Human Complement by Hydroxylamine: D. B. Budzko and H. Müller-Eberhard 506
Neutralization of Sensitized Virus by the Fourth Component of Complement: C. A. Daniels et al. 508
Ventricular Arrhythmias Related to Antibiotic Usage in Dogs: T. J. Regan et al. 509
Crystalline L-Asparaginase from Escherichia coli B: P. P. K. Ho, B. H. Frank, P. J. Bueck 510
Human Growth Hormone Release: Relation to Slow-Wave Sleep and Sleep-Waking Cycles: J. F. Sassin et al. 513

Technical Comments: Surveyor Alpha-Scattering Data: Consistency with Lunar Origin of Eucrites and Howardites: M. B. Duke; Cyclamates and Human Cells: R. S. Goodhart; D. Stone; Procarbazine: Chemical Immunosuppressant also Powerful Carcinogen: J. H. Weisburger 515

Courses 518

Cover

Crystals of L-asparaginase from Escherichia coli B. Partially purified L-asparaginase has demonstrable anti-leukemic activity in animals and man. Crystals of this enzyme, prepared by a simple and efficient process, were effective in experimental tumor systems without adverse side effects (about × 1300). See page 510. [Peter P. K. Ho, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana]
The Control of Technology

It is often argued that science is morally neutral, neither good nor bad. If science is defined as man's accumulated knowledge about himself and his environment, then this is a defensible point of view. It is then technology or the application of science that raises moral, social, and economic issues. The great debate about the responsibility of scientists for the introduction of nuclear weapons has died down, but we are beginning to see that we are faced by a growing number of decisions about the future use of technology that, in total, may be much more important to mankind than even "the bomb."

The tragedy of thalidomide is probably the most clear-cut recent example of the catastrophic effects that can result from a new application of technology where the preliminary research had not been carried far enough to reveal all the long-term effects. The present furor over DDT and other "hard" insecticides is an example of a more complex case of the same kind. The foreseeable dangers from the introduction of new technology range all the way from the relatively clear-cut cases such as thalidomide, to the more complex problems of the widespread use of supersonic aircraft, and on to the infinitely involved social and economic changes that will result from the widespread use of electronic systems for information management.

Society must so organize itself that a proportion of the very ablest and most imaginative of scientists are continually concerned with trying to foresee the long-term effects of new technology. Our present method of depending on the alertness of individuals to foresee danger and to form pressure groups that try to correct mistakes will not do for the future. A rational institutional framework that will assign a formal responsibility for this critical task to a well-selected, well-organized, and well-financed group of scientists is urgently needed. Clearly, this agency must also have strong representation from the social sciences, including law, and close links with political leaders and with "the man in the street." Its task is too important to be left to scientists alone, but scientists must supply the leadership.

In this problem, as in so many, mankind is steering a precarious course between Scylla and Charybdis. On one hand are the dangers of the uncontrolled exploitation of new technology, and on the other are the dangers of such rigid control that progress will cease. Obviously action must begin in individual nations, but it should quickly become international in scope because so many of the potential problems are worldwide. Fortunately we have made a beginning. Suitable control mechanisms have already been formed or are being considered in many areas, such as food and drugs, where the hazards are clear and obvious. The problem now is to extend the same kind of control to broader problems where long-term dangers are potentially more serious and the task of forecasting is much more difficult.—O. M. SOLANDT, Chairman, Science Council of Canada, Ottawa