closed early both times. It will be offered again this fall. The intensity of student interest and the effectiveness with which they have sought out and used faculty resources available to them is most impressive. The result of their activity has been to transform the consciousness of the campus with respect to the implications of population growth.

One's estimate of the probability of producing any lasting effect through teaching can vary a good bit and mine is not very optimistic. However, I think it is necessary to behave as if it were greater than zero. Certainly it is greater than the probability of significantly influencing the action of such groups as the Chamber of Commerce, city councils, or the State Lands Commission, at least in southern California.

Grover C. Stephens
Department of Organismic Biology,
University of California,
Irvine 92664

NIH: Ethics of Budget Cutting and Retrenchment

For many years the National Institutes of Health have provided training grants to departments in a large number of universities to support graduate students in the natural and medical sciences. These programs were adopted to decentralize procedures for awarding fellowships to students so as to reduce the need for direct evaluation of applicants by NIH panels and committees. The training grants also aided in the advance of knowledge in the health sciences and have materially contributed to meeting the nation's needs for an increased number of scientists.

The custom of awarding training grants to universities instead of awarding fellowships directly to students has resulted in a transfer of fiscal responsibility. In selecting students and awarding stipends under training grants the universities have had to make a commitment to support the student for the entire period leading to the Ph.D. degree—generally 4 to 6 years. Training grants have generally been awarded for 5 years with a complete review during the fourth year. By this time, however, a university would have continuing commitments to students already admitted, ranging from 1 to 3 years beyond the expiration of the grant and, if letters of acceptance had already been sent to students admitting them in the fifth year of the grant, its responsibility to them could extend for as long as 4 years beyond the termination of the training grant.

During the current period of retrenchment and budget cuts, many training grants have not been renewed and others have been approved for renewal but have not been funded. This is placing an undue and unfair burden on the universities to provide stipends for the substantial numbers of students to whom they have made continuing commitments. In accepting the principles of the training grant programs, the universities filled their pipelines with graduate students and had to make commitments in good faith extending beyond the period of the grant. The National Institutes of Health are ethically and morally responsible and probably could be held legally responsible for continuing stipends to graduate students already appointed until they complete their degrees.

Elvin A. Kabat
Department of Microbiology,
Columbia University,
630 West 168 Street,
New York 10032

Is the AAAS Council Facing Its Responsibilities?

The Council of the AAAS is composed of about 550 delegates from the affiliated societies, the sections, and the state academies. It meets once each year, usually performs routine business, hears committee reports, and adjourns in less than a day. Councillors are asked to come from throughout the nation during the holiday season for such sessions, and frequently the attendance is poor.

This dismal state of the Council operations is in particular contrast to its possibilities. At a time when science is harassed by government and public agencies, the Council could be a major force for defending and encouraging science and its applications for improving human welfare. No other body in existence has such major possibilities. Why are its potentialities virtually untapped?

The main reason is that it is not well organized. About 10 years ago, a major reorganization was attempted, and the basic power of the Council as the governing body of the AAAS was restored.
Committee on Council Affairs was established which was to meet regularly and organize the Council. The councillors seeking the changes were forced to accept one major and fatal decision, the chairman of the Committee on Council Affairs was to be the president-elect of the AAAS. Most presidents of the AAAS have been excellent choices or their office, but few or none have had experience with the AAAS Council or the time to carry out their duties as chairman of this committee.

If the Council is to assume an active role, the primary step is to allow the Council to choose its own chairman of the Committee on Council Affairs which should meet frequently and act as the executive body between Council meetings. The Council should have numerous active committees with staff help from the AAAS. An excellent organization pattern is offered by the American Chemical Society, whose main office is only one block from the AAAS headquarters. Both its Board and Council have numerous active committees. The bustling crowded corridors of the ACS building are a startling contrast to the staid, quiet corridors of the AAAS building.

The Council in its present form is too large and many of the members attend only one session, if at all. Provision must be made for fewer councillors who would serve minimum terms of 3 years and be removed if absent.

These changes and the proper choice of individuals could make the AAAS Council a great and powerful Parliament of Science capable of voicing the needs, possibilities, and responsibilities of science and scientists. It would be able to face Big Government as an independent critic of government operations in the best traditions of our democracy.

Can this be done? It can. The Council has the power. I have sat through many dull unproductive Council sessions. Action will be asked at the next Council meeting to bring out the needed changes. I ask councillors who share this vision of an unparalleled opportunity to write to me. This action is independent of the current activities of the Committee on Council Affairs. However, any resolutions offered will be submitted for consideration by its members.

WARD PIGMAN

New York Medical College,
Fifth Avenue at 106th Street,
New York 10029

10 OCTOBER 1969

The Bio-Cal Symposium on Protein and Peptide Sequencing will demonstrate the operation, capabilities and results obtained with the new ES-300 Sequenator.

For dates, locations, and reservations contact Mr. Lou Rigali,
Bio-Cal Instrument Co., 2400 Wright Avenue,
Richmond, California 94804. Telephone: (415) 237-4944.

To be assured of a reservation, we suggest you contact Mr. Rigali as soon as possible.
New Clark-type electrode assembly can be used with Gilson Model KM or Model K Oxygraphs without modification. The Clark-type electrode eliminates the problems which occur when using a bare platinum electrode with high protein concentrations and particle suspensions such as whole blood and bacteria, and permits the use of the polarographic method in non-conductive solutions. The response time is only slightly greater than that of the bare platinum electrode.

- **SENSITIVITY**
- **RESPONSIVENESS**
- **STABILITY**

A recording oscillating oxygen cathode, the OXYGRAPH is a specific application of polarographic analysis. A single polarizable micro platinum cathode is coupled by a saturated KCl salt bridge to a nonpolarizable saturated calomel reference anode. Instead of recording a complete current-potential curve, only the limiting current (that current which is limited by the concentration of oxygen in solution) is recorded at an applied constant polarizing voltage, of about −0.6 volts with respect to the anode, across the indicator polarizable cathode.

- A micro platinum cathode for recording rapid changes of oxygen concentration in solution
- Large 20-cm span along the y-axis for a high degree of accuracy
- Sensitivity from ten- to a thousandfold greater than that of conventional gasometric methods for O₂ determinations
- Rapidity of measurements and ease of continuous recording permit accurate determinations of very rapid reactions involving molecular oxygen in solution

WRITE!
GILSON MEDICAL ELECTRONICS
Middleton, Wisconsin 53562
Telephone 608/836-1551

Developed in collaboration with Dr. S. Kuby of the Enzyme Institute, University of Wisconsin, Madison.
What makes one constant temperature circulator better than another?

For one thing, the Lauda Duplex Pump.

All constant temperature circulators heat. Some, like the Lauda K-2/RD shown here, also cool.

But this Lauda model can do even more. Its duplex pump enables it to circulate liquid to and from an external open bath, no matter whether the bath is positioned higher, lower or level with the circulator. Liquid will always return to the K-2/RD because its duplex pump provides simultaneous pressure and suction.

You won't find this feature on many constant temperature circulators.

Another nice thing about this Lauda is its automatic liquid level control. It prevents accidental emptying of the bath by balancing pressure and suction, thereby keeping liquid levels constant in all parts of the system.

These features add up to a better, more versatile circulator.

Besides the K-2/RD, which circulates liquids at temperatures from -10°C to 150°C, duplex pumps and the automatic liquid level control are also available in our N and WB series models. Some of these, heat up to 330°C, or cool down to -130°C. Of course, solid state relays, excess load protection, drainage and flow control valves and stainless steel construction of all immersed components are standard on all Lauda Circulators.

Which Lauda is best for you? Get our free catalog to help you decide.

Write: Lauda Circulators, Division of Brinkmann Instruments Canton Rd., Westbury, N.Y. 11590.
In Canada, write: Brinkmann Instruments (Canada) Ltd., 50 Galaxy Boulevard, Rexdale (Toronto) Ont.