Viscosity of Lunar Lavas: T. Murase and A. R. McBinney .. 1491
Supersaturation of Gases in Water: Absence of Cavitation on Decompression from High Pressures: E. A. Hemmingsen ... 1493
Uranium Localization on Hydroxyapatite by Analysis of Fission Fragment Tracks: R. C. Thompson ... 1494
Fluid Transport: Concentration of the Intercellular Compartment: B. J. Wall, J. L. Oschman, B. Schmidt-Nielsen .. 1497
Postnatal Muscle Fiber Assembly: Localization of Newly Synthesized Myofibrillar Proteins: E. Morkin ... 1499
Cyto genetic Studies with Cyclamate and Related Compounds: D. R. Stoltz et al. 1501
Unified Account of the Variable Effects of Carbon Dioxide on Nerve Cells: J. L. Walker, Jr., and A. M. Brown .. 1502
Line and Grade in the Extinct Medius Species Group of Signodon: R. A. Martin 1504
Carbon Dioxide Fixation by Mouse Embryos prior to Implantation: C. N. Graves and J. D. Biggers ... 1506
Hyperbaric Oxygen: Effects on Metabolism and Ionic Movement in Cerebral Cortex Slices: P. Joanny, J. Corrilo, F. Brue .. 1508
Glycine Inhibition of Asparaginase: W. L. Ryan and H. C. Sornson 1512
Heterozygous Beta Thalassemia: Balanced Globin Synthesis in Bone Marrow Cells: E. Schwartz ... 1513
Bone Marrow and Spleen: Dissociation of Immunologic Properties by Cortisone: M. A. Levine and H. N. Claman .. 1515

MEETINGS

Physical and Chemical Aspects of Ionization and Excitation Processes: F. Williams; Gene Regulation in Mammalian Cells: S. Glucksohn-Waelsch; Calorimetry: G. C. Sinke .. 1522

COVER

Growth surface of the nacreous layer in Pinna radiata (pelecypod). New crystals form at the margins of the overlapping mineral laminae (about \(\times 2900 \)). See page 1486. [Sherwood W. Wise, Jr., University of Illinois]
Concern for the Next Generation

The President's message of 3 March on education and his call for the establishment of a National Institute of Education modeled after the National Institutes of Health raise several kinds of issues. Have the Kennedy and Johnson educational programs been as ineffectual as he claims? Is the call for more studies instead of more money a stalling tactic? But improvements are needed; a sounder understanding of early childhood development is necessary to guide compensatory education programs; and insistence upon better standards for judging school performance is sound policy, despite expected protests from those who prefer faith, hope, and charity over facts as criteria for evaluating their own work.

Although it has been known for 40 years that children are already typed intellectually and socially by the time they enter the first grade, it has only been with the changing priorities of recent years that national attention has been given to the critical importance of a child's early years in determining his later development. There is now widespread concern, but a sense of direction is needed. Perhaps we can gain a better perspective on our own objectives by looking at what others have done. That cross-national studies can be illuminating is demonstrated by Urie Bronfenbrenner's comparison of the education and socialization of children in the United States and the U.S.S.R. In the U.S.S.R., the strategy of nurseries, schools, and youth organizations is to emphasize sharing, collective responsibility, group solidarity, and group control of individual behavior. The child is deliberately brought up "in the collective, by the collective, and for the collective." Groups (a row, a class, a school) are praised, blamed, rewarded, or punished. A child who individually does well is helping his group; one who shirks is betraying his group. Thus the school leads children to conform to established standards, to work toward group goals, and to control each other in these efforts.

Peer influence is also strong in the United States, but its nature is not so carefully planned nor are school practices designed to direct it. Although we respect "togetherness" in the family, increasingly we practice "apartness." Children spend more waking time with their age mates than in the family, and more time with television than in school. Both of these influences are often at variance with norms of desirable personal and social behavior.

As a result of these two approaches, at age 16 the Russian younger is a product of planned and managed development aimed toward Communist morality, while his American counterpart is a product of the uncoordinated influences of family, school, 12,000 to 15,000 hours of television (much of it violent), and the increasing pressure of other children whose attitudes and interests have been similarly formed. As an illustration of the difference in results, Bronfenbrenner found that American children were more likely, and Russian children less likely, to develop in dishonest or antisocial behavior if other children were going to know what they had done. Correspondingly, Russian children seem to have less individual initiative and resourcefulness than American children.

By our standards, the U.S.S.R. has been too concerned about making the next generation conform. But we have not been concerned enough. If the proposed National Institute of Education is established, its responsibility will be no less than that of providing national guidance in translating a now aroused concern for the next generation into effective and constructive improvements in their preparation for adulthood.

—DAEL WOLFLE

* Two Worlds of Childhood: U.S. and U.S.S.R. (Russell Sage Foundation, New York, 1970). Dr. Bronfenbrenner's work was supported by the National Science Foundation, the Russell Sage Foundation, and Cornell University.