the potentiality of computer-assisted instruction, it has largely been addressed to the issue of economics." The authors cite Oettinger's Run, Computer, Run as support for their statement. But is Oettinger informed only when he is skeptical about the economics of CAI? To quote Oettinger further: "The basic needs ... common to most enterprises [are] better ideas, better people, and more money. . . . Every attempt to introduce technological change into education has revealed [that] we know precious little about the psychology of learning, and what we know is more relevant to the laboratory than to the classroom" (7). We wholeheartedly share his concern and skepticism, especially with respect to the helter-skelter attempts to incorporate the computer in a conventional educational environment without defining a cohesive instructional model for the individual (8, 9, 10).

Is the plasma display panel the key to an expensive student console? For the large quantity price of $1800 per console or terminal, existing engineering technology can provide a TV quality image with color and 3-D, speech recognition and speech output, plus a light pen for identifying any aspect of the display. This terminal could store all text centrally, rather than in each student's console, providing distributed costs for centrally located terminal capabilities, facile updating, flexibility in operation, and in "library" management.

Alpert and Bitzer's opening assertion that CAI is a "medium of instruction" is later followed by "the introduction of the major new technology into the educational process. . . . " The latter properly negates their characterization of CAI and stands as a direct contradiction. Resolving this inconsistency would alleviate some of the remaining misconceptions.

ROBERT J. SEIDEL
FELIX F. KOPSTEIN
RONALD J. SWALLOW

Human Resources Research Organization, 300 North Washington Street, Alexandria, Virginia 22314

References and Notes
4. D. N. Hansen, W. Dick, H. Lippert, "Re-

We believe Seidel et al. present little evidence to substantiate the "four misconceptions" which they list as a consequence of reading our article. For example, they assert that in our paper "valid instructional processes or models seem to be taken for granted, rather than viewed as the primary and fundamental problem whose continuing solution must progressively guide hardware and software design." This conclusion is antithetical to our approach. If there is a feature which uniquely characterizes the PLATO program, it is that the designs of hardware and technological software are defined by the educational objectives rather than by the availability of existing commercial technology. With this in mind, the PLATO system was designed for maximum adaptability, not only to accommodate teaching strategies, formulated in accordance with a variety of educational theories, but also to encourage research and development leading to the systematic establishment of valid educational models.

Further, Seidel et al. assert that we have ignored the economic evaluation of CAI by other agencies, in particular the economic evaluation of lesson preparation. This is immediately contradicted by their citing our reference to the study of the Committee for Economic Development (1), a study which did not include the PLATO system in its analysis of the economics of computer-assisted instruction. We stated that the cost of lesson material preparation using the PLATO III system is much lower (by at least a factor of 10) than for the systems evaluated by the CED. Our data cover the preparation of almost 1000 hours of completed lesson material in a wide variety of subjects. Assuming the economic validity of both analyses, and we see no reason...
The under-$10,000 automated AA system.

It even whistles.

Like most automated atomic absorption systems, our AA-120A promises a lot.

Unlike the others, it delivers.

Take our automated sample changer, for instance. It's the only one designed and built by an AA company, so it does a lot more than a converted fraction collector ever could. It holds either 50 test tubes or 50 disposable plastic vials. It resets the baseline automatically between samples. And has three separate time delays built in. One sets the length of each reading and is variable. Another introduces a delay between the time sampling starts and the time the digital indicator is triggered to take a reading. And the third tells the instrument how long to wait between samples.

Our automated sample changer also turns itself off automatically. And whistles when it's done.

Then there's our digital printer with signal averaging capability. It saves you from having to mess with an unwieldy long strip chart. It automatically takes the data, converts it to concentration units, prints it out with the sample number and then signals the changer to go on to the next sample.

In the end, you run more samples, better. And save money to boot.

Finally, there's the AA-120 itself. The finest medium priced AA flame emission spectrophotometer ever to excite an atom. Designed with internal modularity, the AA-120 is very compact, extremely versatile and refreshingly easy to operate and install.

The Varian Techtron AA-120A. A complete, hard-working, automated AA lab assistant for under $10,000.

For complete, easy-to-get information, write Varian Techtron, Walnut Creek, California 94598; NEVA, Azabudai Bldg., Tokyo, Japan; Malton, Ontario, Canada; Crows Nest, N.S.W., Australia; or Zug, Switzerland.

varian techtron

Circle No. 15 on Readers' Service Card
The Small Time Fraction Collector.

It's also a small volumetric fraction collector. In fact, it's one of the smallest general purpose fraction collectors available. And it has a price to match. Under $300, complete.

You can cram 90 tubes into 108 square inches. But if you don't have to, you can select other lift-off reels holding up to 180 tubes. And you don't have to put the controller under the drive base. If you are in a cramped cold room, you can put it on a shelf under the work table, or even outside.

ISCO has other circular and linear fraction collectors, flow monitors, and many more instruments for biochemical research.

For more information, write for brochure FC37.

Radio astronomy is one of the most exciting and rapidly developing fields of science and one which demands—and contributes to—the most advanced technology. We urge that the present stalemate on radio astronomy facilities be broken and that construction of some of the proposed instruments be undertaken. This is necessary if the United States is again to play an important role in this field.

ALAN T. MOFFET*
Owens Valley Radio Observatory, California Institute of Technology,
Pasadena 91109

Marital Success of Scientists

Robert Graves's comments on scientists' wives ("The human toll of science," 3 Apr., p. 96) are unfair to scientists and, I think, statistically unsound. As a scientist's wife, I know many more cases of satisfactory marriages among our colleagues than unsatisfactory or broken ones. Of these, half a dozen have celebrated their golden anniversaries and a great many have passed 20 years of marriage. We talk of the broken marriages, thus publicizing them out of proportion to their numbers.

Graves says that scientists "cannot communicate with their wives about their work in the way open to most husbands." There he pinpoints the problem in most unsatisfactory marriages: lack of communication. A scientist is no more to blame than is a poet or historian who doesn't talk to his wife.

Successful wives of scientists have made one of several choices: they have studied some science before or during marriage, or through conversation they have acquired a superficial knowledge of the field in which the husband works, or they have held up the social and stimulating side of the partnership, or they have developed an interest of their own in which they can communicate. Most scientists marry college-educated women. Science is a major part of daily life, and no woman—or poet—has a right to consider that scientists "live in an exclusive world in which things are viewed in a strange and different way."

BETTY N. SHOR
2655 Ellentown Road,
La Jolla, California 92037
A syringe it's not, but it injects samples into a gas chromatograph in the volume range of 0.1 μl. In fact, you get high repeatability in sub-micro volumes. There is no liquid hold-up or dead volume since the carrier gas sweeps the sample from the injector. It's all-metal, so it's difficult to break. We call it our Sub-Microliter Liquid Injector and it's used with our inlet systems. Available from authorized dealers or Hamilton Company, P.O. Box 307, Whittier, California 90608.

Repeatable Precision: Hamilton's Sub-Microliter Liquid Injector