agricultural crops is negligible. We are currently studying rural groups 12 miles north of Aligarh which illustrate these principles. These groups maintain outstandingly good productivity with very little cost or damage to villagers. Under proper rural management, rhesus monkeys provide a source of income and cultural interest for local people, and at the same time a valuable biological resource is fostered. We hope the ideas of Bermant and Chandrasekhar find wide distribution and favorable consideration.

CHARLES H. SOUTHICK
4-A Oriente Row,
Calcutta 17, India

Intourist: A Pleasant Experience

Romer's letter (23 Apr., p. 326), complaining about his experiences with Intourist in the U.S.S.R. should be considered in relation to general conditions in that country and to the conditions encountered by any tourist not speaking the native language. I spent May and June 1970 in the U.S.S.R. on the exchange program of the U.S.S.R. and U.S. national academies of science. After traveling once to Norosibirsk on my own, I was thereafter most pleased to have the help of Intourist. Thanks to this organization, the foreign tourist benefits from a special waiting room at airports with uncrowded meal facilities, on domestic airlines he can board the plane (one class, with no reservations) before the Russian travelers and thus can select the preferred seats and stay with his friends, and finally, he does not have to stand in line for either reservations or baggage registration. Thanks to the representative of Intourist in the Moscow hotel of the U.S.S.R. Academy of Sciences where I was staying, I was provided, on short notice, with tickets for the opera or the ballet at the Bolshoi Theater, for concerts, and so forth. These events could not be attended without the help of Intourist because of the great demand for tickets.

Considering the still-limited tourist accommodations in the U.S.S.R. and the existing bureaucratic procedures, I found that Intourist was most helpful in relieving the foreign tourist of the numerous difficulties found when traveling alone. Is Romer aware of the vexations of the non-English speaking foreign tourist who, on arrival in the United States, attempts to book a flight or a hotel room, or reserve a seat at the Metropolitan Opera? It is even difficult for him to call home, since the New York operators handling the international lines to Europe do not speak or understand the foreign language involved.

ROGER W. JEANLOZ
Massachusetts General Hospital,
Boston, Massachusetts 02114

I have twice visited the U.S.S.R., once as a tourist in 1958, and again as a representative of the U.S. government to the 9th International Conference of Wildlife Biologists in 1969. For that conference Intourist arranged five tours and handled groups of 30 to 75 biologists flawlessly.

I personally took two tours, one near Moscow, another to eastern Siberia with a group. In 20 years of traveling around the world, I have never seen groups better handled. For example, after we visited Lake Baikal, Intourist informed us that the next day we would be flown to Brask to tour its massive hydroelectric development. We, being biologists, objected and indicated that we would much prefer to spend time in primitive woodland habitats (the taiga). After some discussion, Intourist agreed, flew us to Brask, bussed us to the taiga, turned us loose there for half a day, fed us, and then gave us a quick tour of the hydroelectric development. We were all flown back to Irkutsk, and the tour returned to Moscow while my wife and I took the Trans-Siberian railroad to the east coast. Accidentally, one of our bags was returned to Moscow with the tour group. Four days later at Khabarovsk our bag had been located, shipped across the U.S.S.R. by air, and returned to us.

A curse—yes, if the meeting organizers have not communicated their wishes effectively; a tremendous boon if matters have been properly arranged.

GARDINER BUMP
U.S. Bureau of Sport Fisheries
and Wildlife, Washington, D.C. 20240

Nutrients in Lake Erie

Hubschman suggests (12 Feb., p. 536) that massive harvesting of unspecified organisms from Lake Erie could remove sufficient nutrients to improve the polluted condition of the lake. Quantitative considerations indicate, however, that the amount of common nutrient element removed under such a program
First Aid Kit.
New Nalgene T Joint Sleeves of Teflon TFE.

First aid for frozen ground glass joints! These ultra-thin, self-lubricating sleeves of pure Teflon eliminate breakage without the mess and contamination of stopcock grease.

Unlike others available, Nalgene T sleeves cover the full length of the ground surface. They fit perfectly and will withstand temperatures from -100° to +250° C. Excellent for vacuum systems.

Fifteen sizes from 7/25 to 60/50 packed 6 per size in vinyl, wallet size containers that keep them clean, dry, and ready for reuse. (Cat. No. 6194). Just another way we're trying to keep broken glass out of your laboratory.

Order from your Lab Supply Dealer. Ask for our Catalog or write Department 4106, Nalgene Labware Division, Rochester, New York 14602.

would be small compared to inputs and very small compared to amounts already accumulated in sediments or solution.

For example, input of phosphorus into Lake Erie is estimated to be 2.3×10^{10} g/year, with 24 percent from runoff and 76 percent from municipal and industrial wastes (1). Loss to Lake Ontario is a small fraction of this amount. Photosynthetic production approximates 1.7×10^{12} g of carbon per year (1) and this productivity (66 g of carbon per square meter per year) compares well with Ryther’s estimate of 100 g of carbon per square meter per year for productive coastal areas (2). An average mass ratio of C:N:P = 40:7:1 applies to phytoplankton (3). Thus, primary production could sequester as much as 4.3×10^{10} g of phosphorus per year or an amount about double input.

It seems unlikely that more than a few percent of this quantity could be harvested on a sustained basis. Harvesting of phytoplankton is clearly impractical, and harvesting of animal species would involve trophic levels near 2 at best. Commercial fishing now removes only about 1.4×10^{8} g of phosphorus per year or about 0.6 percent of input. This corresponds to an average trophic level of about 3, if the calculation is based on carbon and the current catch of 4.5×10^{9} g (dry weight) per year is assumed to represent the maximum sustainable yield (4). The harvest of lake organisms might depress biological productivity, however, by removing the growth-limiting nutrient, provided the nutrient accumulates only slowly in the lake and is neither nitrogen nor phosphorus. We are unaware of data which clearly determine the growth-limiting nutrient for Lake Erie.

It would seem more efficient in terms of energy and technology to intercept nutrient elements from cities and industries before they become part of the lake system.

Stuart M. Rosenthal
Thomas C. Hollocher
Environmental Studies Program,
Brandeis University,
Waltham, Massachusetts 02154

References
This microscope will take 1980 accessories.

And 1989 accessories, too. We make sure the ORTHOPLAN never becomes obsolete by constantly developing new accessories for it.

Right now, the ORTHOPLAN takes plano objective lenses for biological and metallurgical applications, transmitted-light dark-field and incident-light dark-field attachments, photomicrographic accessories for 35 mm, 4" x 5" or Polaroid. And it also takes different light sources – halogen and xenon, for example.

These are just a few of the available attachments that make this fine microscope the most versatile you can buy for your research.

The ORTHOPLAN stand is massive, rigid, and is specially designed so when you attach accessories like lamp housings, illuminators and camera equipment, they become an integral part of the microscope—and don’t extend out in every direction.

The field of view is up to 2½ times greater than that of conventional wide-field microscopes. It’s flat, edge to edge, and the image is superb, thanks to the famous Leitz plano objectives.

For more information, write:

Leitz
E. Leitz, Inc., Rockleigh, N.J. 07647
swing with the cool one

The SORVALL RC2-B Automatic Superspeed Refrigerated Centrifuge lets you keep your research cool. Heavy-duty refrigeration holds rotor temperature within ±1°C of desired setting. Patented Gyro-Action Direct Drive — the drive that has never been matched for smoothness — accepts eight angle and horizontal rotors. New zonal capability with the SZ-14 Reorienting Density Gradient Rotor (1400 ml) broadens the RC2-B’s applications range immensely. The RC2-B is a proven performer — there are thousands of them in daily use. And you get a top speed of 20,000 RPM that can produce forces to 49,500 x G — plus rapid acceleration to all speeds. The RC2-B is automatic with all rotors. An elevated, fully instrumented control panel, and simplicity of operation, are added conveniences. Keep your research cool. Look at the RC2-B before you buy any refrigerated centrifuge in the RC2-B range. Ivan Sorvall, Inc. Norwalk, Connecticut 06856.
scanning electrophoresis apparatus

FOR ELECTROFOCUSING
An ultraviolet absorbance monitor in the system intermittently scans the gradient at various wavelengths to determine when ampholytes are focused and provide a baseline of ampholyte absorbance. Scanning during migration shows when the sample is focused, and a final scan provides a continuous profile of the finished gradient as it is being collected.

The low volume column conserves expensive ampholytes; internal streamlining gives superior resolution and recovery of focused zones.

DENSITY GRADIENT ELECTROPHORESIS
Easy loading and automatic sample collection simplify the electrophoretic separation and purification of small samples. Intermittent absorbance scanning provides a complete history of peak separation and indicates completion of migration.

For more information on all ISCO density gradient and gel electrophoresis apparatus, send for our general catalog.

1964–1965, and to the tail end of a mini-epidemic of thalidomide embryopathy in 1962. This is because, in advance of these events, specific rubrics for limb reduction deformities and cataract or eye malformations had been included in the coding.

A. Gittelsohn (Johns Hopkins) discussed the possible use of computerized hospital records for monitoring malformations. Discharge abstracts are already extensively computerized in many hospitals (and in one entire state) for the purpose of characterizing medical care. The greatest limitation to efficient use of these data for surveillance is lack of patient identifier such as social security number (or name) with the abstract provided. Sensitivity to confidentiality currently precludes this. It is thus difficult to match abstracted hospital summaries for the same anonymous individual for whom little identifying data is available. However, the more demographic variables that are specified the greater the likelihood of linking any two records. In one small state with about 10,000 annual births, use of just sex, birth date, residence, and birth weight provides a high degree of accuracy of matches. Inclusion of information derivable from hospital reports increased the ascertainment of malformations 250 percent over that from just birth certificates alone. A main advantage of record linkage is its low cost compared to other methods of monitoring.

In Metropolitan Atlanta hospitals are visited systematically, and defects noted in the charts or otherwise reported by nurses or physicians are recorded. There have been three temporal clusters of defects since 1967, but investigation has not revealed any suggestive environmental causes (J. W. Flynn, Center for Disease Control, Atlanta).

The higher incidence of mental retardation in children with minor birth defects such as low-set ears or widespread eyes strongly implies that mental deficiency in such affected individuals had its onset in prenatal life (D. W. Smith). The possibility of using gross minor defects in newborns as indirect markers of environmental insult is enhanced by the fact that there is a relatively high frequency (10 to 15 percent) of defects in the newborn population. Significant trends could thus be detected more easily than with the use of less frequent markers (E. B. Hook, Birth Defects Institute). The outstanding question with this approach is the unknown sensitivity of such defects to environmental insult.

In discussion of some problems in the biochemical approach to monitoring mutations, it was pointed out that although it is relatively easy to automate screening for deficiencies of protein associated with disease states, it is a much more formidable task to automate monitoring of qualitative protein changes (I. H. Scheinberg, Albert Einstein College of Medicine). It was suggested that zone electrophoresis of cord blood is one of the more promising methods of detecting fresh mutations in the human population. However, the current electrophoretic techniques may detect only 10 percent of allele variability, the rate of (electrophoretically) detectable mutations for a protein coded by 1000 nucleotides may be 5×10^{-8} per protein per generation, and the error rate for typing and other procedures is likely to be at a minimum 1 per 1000 or at least 100 times greater than the mutation rate. Furthermore, the rate of nonpaternity in the United States is vastly higher than the frequency of a new mutant at any particular locus. These apparent problems could be overcome by limiting the investigation of the possibility of new mutation to individuals with variants with a collective gene frequency of less than .0005. In this event, an estimated 400,000 blood samples must be screened for 30 proteins to obtain enough variants to detect 60 mutants (the number required statistically to document a change of about one-third above the background rate). Automation of electrophoretic techniques is probably the only possible approach to a task of this magnitude (L. Weitkamp, University of Rochester).

The high correlation of chromosome breakage with mutation in lower organisms as well as the increased rate of breakage in irradiated individuals suggests that these markers may be general signs of mutagenic environmental insult (A. Bloom, University of Michigan, and M. Cohen, State University of New York, Buffalo). However, the significance of breakage in vitro after addition of drugs to cells in culture is harder to assess and may be indirectly influenced by a host of unknown culture conditions. The main drawback to large-scale monitoring of chromosomal breakage in human populations is the tedious task of examining metaphase plates and scoring breaks. Cohen was optimistic about the
prospects for successful automation in view of the current status of several systems for either scoring from photographs of plates already picked out by human examiners, or else by automatic examination of slides without previous human selection of metaphase plates.

A histochemical method using 2-deoxyglucose-6-phosphate as a substrate for detecting variants of glucose-6-phosphate dehydrogenase in leukocytes was discussed as a possible means of monitoring somatic cell mutations. The wild-type enzyme lacks this property, but at least two known variants of the enzyme possess it. In peripheral blood of middle-aged people about one per 1000 cells strongly express the variant phenotype, in agreement with a hypothesized mutation rate of 10^{-5} amino acid substitutions per cell generation and about 10^4 divisions of leukocyte stem cells during the middle-aged life-span. The heritable nature of the phenotype in white cells is yet to be established, however. This or similar approaches for detecting individual cell variants (if proven to be due to somatic mutation) will permit assessment of the mutational exposure of an individual through his lifetime, as well as fairly immediate evaluation of mutagenic effect of acute exposure to a suspect environmental factor (H. E. Satten, University of Texas).

In closing remarks, Hirschorn felt that too little attention had been devoted to the problem of the confidentiality of information acquired during monitoring. He cited misuse of Dutch genetic records by the Nazis during World War II as an example of the problems which record gathering for research purposes can entail. In reply, others commented that registries obtained from vital records use already collected data which have statutory protection and simply tabulate them in a different way. Collection of confidential information from any part of the population (as is currently mandated by law for censuses and income tax purposes, as well as for vital statistics) entails a certain personal risk which is accepted by society because of the presumed social benefits of use of this information.

Several participants briefly considered the problems of identifying the responsible environmental agent once an observed increase in malformation or mutation rate is observed. Some felt that appropriate epidemiological techniques were relatively well developed for such investigation. In addition,
Shandon gets to the bottom of your chromatography tank problems

The bottom of a Shandon Model 500 Panglas® Chromatank® is different because it’s absolutely flat. Press molding eliminates the mound found at the bottom of ordinary tanks, giving you an even distribution of solvent throughout the tank and saving solvent, especially in ascending techniques.

Press molding also gives the Panglas Chromatank stronger corners and heavier walls. It’s made entirely of glass, without metal or plastic fittings, to eliminate solvent contamination.

The Model 500 is the largest tank of its kind, measuring 20” x 8” x 22” high, accommodating either sheets or strips for ascending or descending chromatography. It will also accept 46 cm by 57 cm sheets making it ideal for two-way chromatography.

Man and Environment:
A National Biological Congress

A series of national biological meetings of a new style has been inaugurated in which biologists talk not mainly to fellow-specialists but to those in other disciplines and to the public. The idea, conceived by William McElroy when he was president of the American Institute of Biological Sciences, is to bring biology to the public, somewhat as the AAAS meetings bring all of science to the public. Since the first of three projected meetings of this type, held in Detroit last November, was a success, plans were immediately put in motion for the second, which is to be held 23–26 October in Miami Beach. The theme of the series is Man and Environment, and participating biologists are expected to present and discuss environmental biology and many related topics before an audience drawn from a variety of disciplines, or even laymen. Needless to say, this is not an easy assignment, and no doubt some of the meetings may become transmuted into technical discussions; but the goal is there, and everyone agrees that it is high time biologists met with those in other scientific fields and shared their plans and their secrets with them.

At a time when taxpayers are becoming skeptical about financial support of science, and indeed about support of education (as every university official knows), it is essential that the public be well and carefully informed as to what biologists are doing and planning. It is equally important, and even more stimulating, for those of us who are active in one area of biology to know at least something about what our colleagues are doing in other areas. To this end the program for the congress covers a wide sweep. It includes more applied biology than the regular AIBS meetings, since it reaches over into...
Man and Environment being the theme, environmental biology is in the forefront. The 15 morning symposia will deal with such broad topics as "Ecological engineering" (organized by Thomas Malone) or "Radiation—its control and future dangers" (organized by Alexander Hollaender). Another 15 or so afternoon symposia will be presented by the biological societies, often acting in small groups; a program on plant and animal pests actually involves four societies at once. Naturally, some of the problems of Florida will have an airing; part of a symposium on weather modification features its application to South Florida, and a whole symposium is to be devoted to the Everglades. But Man is not neglected; symposia on the world protein food problem, new knowledge of autoimmunity, population problems, and world trends in epidemic diseases will sum up recent developments in four very prominent fields.

One of the evenings will be devoted to a discussion of the role of biologists in shaping national policy, in which McElroy, director of the National Science Foundation, and several national legislators will take part. Details of all the programs can be had from the AIBS, 3900 Wisconsin Avenue, NW, Washington, D.C. 20014.

The last day of the congress will be devoted to field trips. South Florida is a biologically unusual part of the country and offers such sights as crocodiles and flamingos in their native habitats in the Everglades. The Fairchild Tropical Garden and the Plant Introduction Station may be said to offer the botanical opposite numbers of these rarities. Other trips will include the marine biological laboratories nearby and on the Keys, and at Bimini in the Bahamas.

Lastly, an advantage of the time and place chosen is that the hotel rates in Miami Beach in October will be at their minimum.

KENNETH V. THIMANN
Crown College, University of California, Santa Cruz 95060